Skip to main content
Log in

Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Acylated phenylethanoid glycosides, echinacoside (1) and acteoside (2), principal constituents in stems of Cistanche tubulosa (Orobanchaceae), inhibited the increase in postprandial blood glucose levels in starch-loaded mice at doses of 250–500 mg/kg p.o. These compounds (1 and 2) also significantly improved glucose tolerance in starch-loaded mice after 2 weeks of continuous administration at doses of 125 and/or 250 mg/kg/day p.o. without producing significant changes in body weight or food intake. In addition, several constituents from C. tubulosa, including 1 (IC50 = 3.1 μM), 2 (1.2 μM), isoacteoside (3, 4.6 μM), 2′-acetylacteoside (4, 0.071 μM), tubulosides A (5, 8.8 μM) and B (9, 4.0 μM), syringalide A 3-O-α-l-rhamnopyranoside (10, 1.1 μM), campneoside I (13, 0.53 μM), and kankanoside J1 (14, 9.3 μM), demonstrated potent rat lens aldose reductase inhibitory activity. In particular, the potency of compound 4 was similar to that of epalrestat (0.072 μM), a clinical aldose reductase inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jiménez C, Riguera R (1994) Phenylethanoid glycosides in plants: structure and biological activity. Nat Prod Rep 11:591–606

    Article  PubMed  Google Scholar 

  2. Fu G, Pang H, Wong YH (2008) Naturally occurring phenylethanoid glycosides: potential leads for new therapeutics. Curr Med Chem 15:2592–2613

    Article  CAS  PubMed  Google Scholar 

  3. He J, Hu X-P, Zeng Y, Li Y, Wu H-Q, Qiu R-Z, Ma W-J, Li T, Li C-Y, He Z-D (2011) Advanced research on acteoside for chemistry and bioactivities. J Asian Nat Prod Res 13:449–464

    Article  CAS  PubMed  Google Scholar 

  4. Stoll A, Renz J, Brack A (1950) Isolierung und konstitution des echinacosids, eines glykosids aus den wurzeln von Echinacea angustifolia D. C. 6. mitteilung über antibakterielle stoffe. Helv Chim Acta 33:1877–1893

    Article  CAS  Google Scholar 

  5. Becker H, Hsieh WC, Wylde R, Laffite C, Andary C (1982) Structure of echinacoside. Z Naturforsch C: Biosci 37C:351–353

    CAS  Google Scholar 

  6. Scarpati ML, Dell MF (1963) Isolation from Verbascum sinuatum of two new glucosides, verbascoside and isoverbascoside. Ann Chim 53:356–367

    CAS  Google Scholar 

  7. Birkofer L, Kaiser C, Thomas U (1968) Sugar esters. IV. acteoside and neoacteoside, sugar esters from Syringa vulgaris. Z Naturforsch, B: Chem Sci 23:1051–1058

    CAS  Google Scholar 

  8. Andary C, Wylde R, Laffite C, Privat G, Winternitz F (1982) Structures of varbascoside and orobanchoside, caffeic acid sugar esters from Orobanche rapum-genistae. Phytochemistry 21:1123–1127

    Article  CAS  Google Scholar 

  9. Sakurai A, Kato T (1983) A new glycoside, kusaginin isolated from Clerodendron trichotomum. Bull Chem Soc Jpn 56:1573–1574

    Article  CAS  Google Scholar 

  10. Lee KJ, Woo E-R, Choi CY, Shin DW, Lee DG, You HJ, Jeong HG (2004) Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci 74:1051–1064

    Article  CAS  PubMed  Google Scholar 

  11. Jia C, Shi H, Jin W, Zhang K, Jiang Y, Zhao M, Tu P (2009) Metabolism of echinacoside, a good antioxidant, in rats: isolation and identification of its biliary metabolites. Drug Metab Dispos 37:431–438

    Article  CAS  PubMed  Google Scholar 

  12. Jia Y, Guan Q, Guo Y, Du C (2012) Echinacoside stimulates cell proliferation and prevents cell apoptosis in intestinal epithelial MODE-K cells by up-regulation of transforming growth factor-β1 expression. J Pharmacol Sci 118:99–108

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Yang Y, Zhu P, Chen W, Qi D, Shi X, Zhang C, Yang Z, Li P (2012) Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells. Fitoterapia 83:1443–1450

    Article  CAS  PubMed  Google Scholar 

  14. Li F, Yang X, Yang Y, Guo C, Zhang C, Yang Z, Li P (2013) Antiosteoporotic activity of echinacoside in ovariectomized rats. Phytomedicine 20:549–557

    Article  PubMed  Google Scholar 

  15. Yoshikawa M, Matsuda H, Morikawa T, Xie H, Nakamura S, Muraoka O (2006) Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanche tubulosa. Bioorg Med Chem 14:7468–7475

    Article  CAS  PubMed  Google Scholar 

  16. Morikawa T, Pan Y, Ninomiya K, Imura K, Matsuda H, Yoshikawa M, Yuan D, Muraoka O (2010) Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa. Bioorg Med Chem 18:1882–1890

    Article  CAS  PubMed  Google Scholar 

  17. Pan Y, Morikawa T, Ninomiya K, Imura K, Yuan D, Yoshikawa M, Muraoka O (2010) Bioactive constituents from Chinese natural medicines. XXXVI. Four new acylated phenylethanoid oligoglycosides, kankanosides J1, J2, K1, and K2, from stems of Cistanche tubulosa. Chem Pharm Bull 58:575–578

    Article  CAS  PubMed  Google Scholar 

  18. Xie H, Morikawa T, Matsuda H, Nakamura S, Muraoka O, Yoshikawa M (2006) Monoterpene constituents from Cistanche tubulosa: chemical structures of kankanosides A-E and kankanol. Chem Pharm Bull 54:669–675

    Article  CAS  PubMed  Google Scholar 

  19. Morikawa T, Pan Y, Ninomiya K, Imura K, Yuan D, Yoshikawa M, Hayakawa T, Muraoka O (2010) Iridoid and acyclic monoterpene glycosides, kankanosides L, M, N, O, and P from Cistanche tubulosa. Chem Pharm Bull 58:1403–1407

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi H, Oguchi H, Takizawa N, Miyase T, Ueno A, Usmanghani K, Ahmad M (1987) New phenylethanoid glycosides from Cistanche tubulosa (Schrenk) Hook. f. I. Chem Pharm Bull 35:3309–3314

    Article  CAS  Google Scholar 

  21. Shimoda H, Tanaka J, Takahara Y, Takemoto K, Shan S-J, Su M-H (2009) The hypocholesterolemic effects of Cistanche tubulosa extract, a Chinese traditional crude medicine, in mice. Am J Chin Med 37:1125–1138

    Article  CAS  PubMed  Google Scholar 

  22. Yoshikawa M, Morikwa T, Matsuda H, Tanabe G, Muraoka O (2002) Absolute stereostructure of potent α-glucosidase inhibitor, salacinol, with unique thiosugar sulfonium sulfate inner salt structure from salacia reticulata. Bioorg Med Chem 10:1547–1554

    Article  CAS  PubMed  Google Scholar 

  23. Muraoka O, Morikawa T, Miyake S, Akaki J, Ninomiya K, Yoshikawa M (2010) Quantitative determination of potent α-glucosidase inhibitors, salacinol and kotalanol, in Salasia species using liquid chromatography-mass spectrometry. J Pharm Biomed Anal 52:770–773

    Article  CAS  PubMed  Google Scholar 

  24. Muraoka O, Morikawa T, Miyake S, Akaki J, Ninomiya K, Pongpiriyadacha Y, Yoshikawa M (2011) Quantitative analysis of neosalacinol and neokotalanol, another two potent α-glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography. J Nat Med 65:142–148

    Article  CAS  PubMed  Google Scholar 

  25. Matsuda H, Morikawa T, Toguchida I, Yoshikawa M (2002) Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull 50:788–795

    Article  CAS  PubMed  Google Scholar 

  26. Yoshikawa M, Morikawa T, Murakami T, Toguchida I, Harima S, Matsuda H (1999) Medicinal flowers. I. aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem Pharm Bull 47:340–345

    Article  CAS  PubMed  Google Scholar 

  27. Matsuda H, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2002) Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Chem Pharm Bull 50:972–975

    Article  CAS  PubMed  Google Scholar 

  28. Yoshikawa M, Murakami T, Ishiwada T, Morikawa T, Kagawa M, Higashi Y, Matsuda H (2002) New flavonol oligoglycosides and polyacylated sucroses with inhibitory effects on aldose reductase and platelet aggregation from the flowers of Prunus mume. J Nat Prod 65:1151–1155

    Article  CAS  PubMed  Google Scholar 

  29. Matsuda H, Morikawa T, Yoshikawa M (2002) Antidiabetogenic constituents from several natural medicines. Pure Appl Chem 74:1301–1308

    Article  CAS  Google Scholar 

  30. Xie H, Wang T, Matsuda H, Morikawa T, Yoshikawa M, Tani T (2005) Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of saussureosides A and B from Saussurea medusa. Chem Pharm Bull 53:1416–1422

    Article  CAS  PubMed  Google Scholar 

  31. Morikawa T, Xie H, Wang T, Matsuda H, Yoshikawa M (2008) Bioactive constituents from Chinese natural medicines. XXXII. Aminopeptidase N and aldose reductase inhibitors from Sinocrassula indica: structures of sinocrassosides B4, B5, C1, and D1–D3. Chem Pharm Bull 56:1438–1444

    Article  CAS  PubMed  Google Scholar 

  32. Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Kon’i H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Antidiabetogenic oligostilbenoids and 3-ethyl-4-phenyl-3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg Med Chem 20:832–840

    Article  CAS  PubMed  Google Scholar 

  33. Morikawa T, Kishi A, Pongiriyadacha Y, Matusda H, Yoshikawa M (2003) Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J Nat Prod 66:1191–1196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in Aid for Scientific Research by Japan Society for the Promotion of Science (JSPS) KAKENHI a Grant Number 24590153 and The Japan–China Medical Association for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Muraoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, T., Ninomiya, K., Imamura, M. et al. Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. J Nat Med 68, 561–566 (2014). https://doi.org/10.1007/s11418-014-0837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0837-9

Keywords

Navigation