Skip to main content
Log in

A pseudo-kinetic approach for Helmholtz equation

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

A lattice Boltzmann type pseudo-kineticmodel for a non-homogeneous Helmholtz equation is derived in this paper. Numerical results for some model problems show the robustness and efficiency of this lattice Boltzmann type pseudo-kinetic scheme. The computation at each site is determined only by local parameters, and can be easily adapted to solve multiple scattering problems with many scatterers or wave propagation in nonhomogeneous medium without increasing the computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayliss, A., Goldstein, C. I. and Turkel, E., An iterative method for the Helmholtz equation, J. Comput. Phys., 49, 1983, 443–457.

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi, R., Succi, S. and Vergassola, M., The lattice Boltzmann equations: theory and applications, Phys. Rep., 222, 1992, 147–197.

    Article  Google Scholar 

  3. Chopard, B., Luthi, P. O. and Wagen, J. F., Lattice Boltzmann method for wave propagation in urban microcells, IEEE Proc. Microw. Antennas Propag., 144(4), 1997, 251–255.

    Article  Google Scholar 

  4. Clayton, R. and Engquist, B., Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seis. Soc. America, 67(6), 1977, 1529–1540.

    Google Scholar 

  5. Clayton, R. and Engquist, B., Absorbing boundary conditions for wave-equation migration, Geophysics, 45(5), 1980, 895–904.

    Article  Google Scholar 

  6. Collins, M. D. and Kuperman, W. A., Inverse problems in ocean acoustics, Inverse Problems, 10, 1994, 1023–1040.

    Article  MathSciNet  MATH  Google Scholar 

  7. Egorov, Y. V. and Shubin, M. A., Foundations of the Classical Theory of Partial Differential Equations (Translated by R. Cooke), Encyclopaedia of Mathematical Sciences, Vol. 30, Springer-Verlag, New York, 2001.

    Google Scholar 

  8. Engquist, B. and Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31, 1977, 629–651.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fries, T. P. and Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Int. J. Numer. Meth. Engng, 84, 2010, 253–304.

    MathSciNet  MATH  Google Scholar 

  10. Giladi, E. and Keller, J. B., A hybrid numerical asymptotic method for scattering problems, J. Comput. Phys., 174, 2001, 226–247.

    Article  MathSciNet  MATH  Google Scholar 

  11. Givoli, D. and Patlashenko, I., Optimal local non-reflecting boundary conditions, Appl. Numer. Math., 27, 1998, 367–384.

    Article  MathSciNet  MATH  Google Scholar 

  12. He, X. and Luo, L. S., Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 1997, 6811–6817.

    Article  Google Scholar 

  13. Higdon, R. L., Numerical absorbing boundary conditions for the wave equation, Math. Comp., 49(179), 1987, 65–90.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ishimaru, A., Theory and application of wave propagation and scattering in random media, Proceedings of the IEEE, 65, 1977, 1030–1061.

    Article  Google Scholar 

  15. Ishimaru, A., Wave Propagation and Scattering in Random Media, Series on Electromagnetic Wave Theory, IEEE Press, New York, 1997.

    Google Scholar 

  16. Lindman, E. L., Free space boundary conditions for time dependent wave equation, J. Comput. Phys., 18, 1975, 66–78.

    Article  MATH  Google Scholar 

  17. Luthi, P. O., Lattice Wave Automata: From Radio Waves to Fractures Propagation, Phd Thesis, Universite de Geneve, 1997.

    Google Scholar 

  18. Majda, A. and Osher, S., Reflection of singularities at the boundary, Comm. Pure Appl. Math., 28, 1975, 277–298.

    Google Scholar 

  19. Martin, P. A., Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles, Encyclopedia of Mathematics and its Applications, Vol. 107, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  20. Obrecht, C. and Kuznik, F., Tourancheau, B. and Roux, J., Multi-GPU implementation of the lattice Boltzmann method, Comp. Math. Appl., 65(2), 2013, 252–261.

    Article  MathSciNet  Google Scholar 

  21. Perthame, B., Vega, L., Energy concentration and Sommerfeld condition for Helmholtz and Liouville equations, C. R. Acad. Sci. Paris, Ser. I, 337, 2003, 587–592.

    Article  MathSciNet  MATH  Google Scholar 

  22. Perthame, B. and Vega, L., Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal., 164, 1999, 340–355.

    Article  MathSciNet  MATH  Google Scholar 

  23. Riegel, E., Indinger, T. and Adams, N. A., Implementation of a lattice Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology, Computer Science-Research and Development, 23, 2009, 241–247.

    Article  Google Scholar 

  24. Sommerfeld, A., Partial Differential Equations in Physics, Academic Press, New York, 1964.

    Google Scholar 

  25. Strouboulis, T., Babuskab, I. and Hidajat, R., The generalized finite element method for Helmholtz equation: Theory, computation, and open problems, Computer Methods in Applied Mechanics and Engineering, 195, 2006, 4711–4731.

    Article  MathSciNet  MATH  Google Scholar 

  26. Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, Oxford, 2001.

    MATH  Google Scholar 

  27. Taylor, M. E., Partial differential equations II: Qualitative studies of linear equations, Applied Mathematical Sciences, Vol. 116, Springer-Verlag, New York, 1996.

    Book  MATH  Google Scholar 

  28. Tikhonov, A. N. and Samarskii, A. A., Equations of Mathematical Physics, Dover Publ., New York, 1990.

    Google Scholar 

  29. Tolke, J., Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA, Comput. Visual. Sci., 13, 2010, 29–39.

    Article  Google Scholar 

  30. Tubbs, K. and Tsai, F., GPU accelerated lattice Boltzmann model for shallow water flow and mass transport, Int. J. Numer. Meth. Engng., 86, 2011, 316–334.

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, G., A lattice Boltzmann equation for waves, J. Comput. Phys., 161, 2000, 61–69.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Yan, G. and Dong, Y., A new lattice Boltzmann model for the Laplace equation, Appl. Math. Comput., 215, 2009, 539–547.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radjesvarane Alexandre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandre, R., Liao, J. A pseudo-kinetic approach for Helmholtz equation. Chin. Ann. Math. Ser. B 34, 319–332 (2013). https://doi.org/10.1007/s11401-013-0775-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-013-0775-y

Keywords

2000 MR Subject Classification

Navigation