Skip to main content
Log in

Finite Volume Multilevel Approximation of the Shallow Water Equations

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The authors consider a simple transport equation in one-dimensional space and the linearized shallow water equations in two-dimensional space, and describe and implement a multilevel finite-volume discretization in the context of the utilization of the incremental unknowns. The numerical stability of the method is proved in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamy, K., Bousquet, A., Faure, S., et al., A multilevel method for finite-volume discretization of the two-dimensional nonlinear shallow-water equations, Ocean Modelling, 33, 2010, 235–256. DOI: 10.1016/j.ocemod.2010.02.006

    Article  Google Scholar 

  2. Adamy, K. and Pham, D., A finite-volume implicit Euler scheme for the linearized shallow water equations: stability and convergence, Numerical Functional Analysis and Optimization, 27(7–8), 2006, 757–783.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellanger, M., Traitement du Signal, Dunod, Paris, 2006.

    Google Scholar 

  4. Bousquet, A., Marion, M. and Temam, R., Finite volume multilevel approximation of the shallow water equations II, in preparation.

  5. Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zhang, T. A., Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation, Springer-Verlag, Berlin, 2007.

    Google Scholar 

  6. Chen, Q., Shiue, M. C. and Temam, R., The barotropic mode for the primitive equations, Special issue in memory of David Gottlieb, Journal of Scientific Computing, 45, 2010, 167–199. DOI: 10.1007/s10915-009-9343-8

    Article  MathSciNet  Google Scholar 

  7. Chen, Q., Shiue, M. C., Temam, R. and Tribbia, J., Numerical approximation of the inviscid 3D Primitive equations in a limited domain, Math. Mod. and Num. Anal. (M2AN), 45, 2012, 619–646. DOI: 10.105/m2an/2011058

    Article  MathSciNet  Google Scholar 

  8. Dubois, T., Jauberteau, F. and Temam, R., Dynamic, Multilevel Methods and the Numerical Simulation of Turbulence, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  9. Dautray, R. and Lions, J. L., Mathematical analysis and numerical methods for science and technology, Springer-Verlag, Berlin, 1990–1992.

    Book  Google Scholar 

  10. Eymard, R., Gallouet, T. and Herbin, R., Finite volume methods, Handbook of Numerical Analysis, P. G. Ciarlet, J. L. Lions (eds.), Vol. VII, North-Holland, Amsterdam, 2002, 713–1020.

    Google Scholar 

  11. Gie, G. M. and Temam, R., Cell centered finite-volume methods using Taylor series expansion scheme without fictitious domains, International Journal of Numerical Analysis and Modeling, 7(1), 2010, 1–29.

    MathSciNet  Google Scholar 

  12. Huang, A. and Temam, R., The linearized 2D inviscid shallow water equations in a rectangle: boundary conditions and well-posedness, to appear.

  13. Leveque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.

    Book  Google Scholar 

  14. Lions, J. L., Temam, R. and Wang, S., Models of the coupled atmosphere and ocean (CAO I), Computational Mechanics Advances, 1, 1993, 5–54.

    MathSciNet  MATH  Google Scholar 

  15. Lions, J. L., Temam, R. and Wang, S., Numerical analysis of the coupled models of atmosphere and ocean (CAO II), Computational Mechanics Advances, 1, 1993, 55–119.

    MathSciNet  MATH  Google Scholar 

  16. Lions, J. L., Temam, R. and Wang, S., Splitting up methods and numerical analysis of some multiscale problems, Computational Fluid Dynamics Journal, special issue dedicated to A. Jameson, 5(2), 1996, 157–202.

    MathSciNet  Google Scholar 

  17. Marchuk, G. I., Methods of numerical mathematics, 2nd edition, Translated from the Russian by Arthur A. Brown, Applications of Mathematics, 2, Springer-Verlag, New York, Berlin, 1982.

    Book  MATH  Google Scholar 

  18. Marion, M. and Temam, R., Nonlinear Galerkin Methods, SIAM J. Num. Anal., 26, 1989, 1139–1157.

    Article  MathSciNet  MATH  Google Scholar 

  19. Marion, M. and Temam, R., Navier-Stokes equations, Theory and Approximation, Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions (eds.), North-Holland, Amsterdam, VI, 1998, 503–689.

    Google Scholar 

  20. Rousseau, A., Temam, R. and Tribbia, J., The 3D Primitive Equations in the Absence of Viscosity: Boundary Conditions and Well-Posedness in the Linearized Case, J. Math. Pures Appl., 89(3), 2008, 297–319. DOI: 10.1016/j.matpur.2007.12.001

    Article  MathSciNet  MATH  Google Scholar 

  21. Rousseau, A., Temam, R. and Tribbia, J., Boundary value problems for the inviscid primitive equations in limited domains, Computational Methods for the Atmosphere and the Oceans, Handbook of Numerical Analysis, Special Volume, Vol. XIV, R. M. Temam, J. J. Tribbia (Guest Editors), P. G. Ciarlet (Editor), Elsevier, Amsterdam, 2008.

    Google Scholar 

  22. Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations, 2nd edition, SIAM, philadelphia, PA, 2004.

    Book  MATH  Google Scholar 

  23. Temam, R., Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21, 1990, 154–178.

    Article  MathSciNet  MATH  Google Scholar 

  24. Temam, R. and Tribbia, J., Open boundary conditions for the primitive and Boussinesq equations, J. Atmospheric Sciences, 60, 2003, 2647–2660.

    Article  MathSciNet  Google Scholar 

  25. Yanenko, N. N., The method of fractional steps, The solution of problems of mathematical physics in several variables, Translated from the Russian by T. Cheron, English translation edited by M. Holt, Springer-Verlag, New York, Heidelberg, 1971.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Bousquet.

Additional information

In honor of the scientific heritage of Jacques-Louis Lions

Project supported by the National Science Foundation (Nos. DMS 0906440, DMS 1206438) and the Research Fund of Indiana University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bousquet, A., Marion, M. & Temam, R. Finite Volume Multilevel Approximation of the Shallow Water Equations. Chin. Ann. Math. Ser. B 34, 1–28 (2013). https://doi.org/10.1007/s11401-012-0760-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-012-0760-x

Keywords

2000 MR Subject Classification

Navigation