Skip to main content

Advertisement

Log in

Utilization of recovered wood in cascades versus utilization of primary wood—a comparison with life cycle assessment using system expansion

  • WOOD AND OTHER RENEWABLE RESOURCES
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

A cascading utilization of resources is encouraged especially by legislative bodies. However, only few consecutive assessments of the environmental impacts of cascading are available. This study provides answers to the following questions for using recovered wood as a secondary resource: (1) Does cascading decrease impacts on the environment compared to the use of primary wood resources? (2) What aspects of the cascading system are decisive for the life cycle assessment (LCA) results?

Methods

We conducted full LCAs for cascading utilization options of waste wood and compared the results to functionally equivalent products from primary wood, thereby focusing on the direct effects cascading has on the environmental impacts of the systems. In order to compare waste wood cascading to the use of primary wood with LCA, a functional equivalence of the systems has to be achieved. We applied a system expansion approach, considering different options for providing the additionally needed energy for the cascading system.

Results and discussion

We found that the cascading systems create fewer environmental impacts than the primary wood systems, if system expansion is based on wood energy. The most noticeable advantages were detected for the impact categories of land transformation and occupation and the demand of primary energy from renewable sources. The results of the sensitivity analyses indicate that the advantage of the cascading system is robust against the majority of considered factors. Efficiency and the method of incineration at the end of life do influence the results.

Conclusions

To maximize the benefits and minimize the associated environmental impacts, cascading proves to be a preferable option of utilizing untreated waste wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • BMU-German Federal Ministry for the Environment Nature Conservation and Nuclear Safety (2012) Deutsches Ressourceneffizienzprogramm (ProgRess), Berlin

  • Brandão M, Levasseur A, Kirschbaum MUF, Weidema BP, Cowie AL, Jørgensen SV, Hauschild MZ, Pennington DW, Chomkhamsri K (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18(1):230–240

    Article  Google Scholar 

  • Bystricky M, Knödlseder T, Weber-Blaschke G, Faulstich M (2010) Comparing environmental impacts of electricity, heat and fuel from energy crops: evaluating biogas utilization pathways by the basket of benefit methodology. Eng Life Sci 10(6):570–576

    Article  CAS  Google Scholar 

  • DIN Deutsches Institut für Normung e. V. (2005) DIN EN 13986 - Holzwerkstoffe zur Verwendung im Bauwesen - Eigenschaften, Bewertung der Konformität und Kennzeichnung (Wood-based panels for use in construction—characteristics, evaluation of conformity and marking)

  • DIN Deutsches Institut für Normung e. V. (2006a) ISO 14040 - Ökobilanz - Grundsätze und Rahmenbedingungen(14040)

  • DIN Deutsches Institut für Normung e. V. (2006) ISO 14044 - Ökobilanz -Anforderungen und Anleitungen(14044)

  • Ekvall T (1999) Key methodological issues for life cycle inventory analysis of paper recycling. J Clean Prod 7:281–294

    Article  Google Scholar 

  • European Commission (2011) A resource-efficient Europe. Flagship initiative under the Europe 2020 Strategy, Brussels

  • Finnveden G (1999) Methodological aspects of life cycle assessment of integrated solid waste management systems. Resour Conserv Recy 26(3–4):173–187

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1–21

    Article  Google Scholar 

  • Fleischer G, Schmidt W (1996) Functional unit for systems using natural raw materials. Int J Life Cycle Assess 1(1):23–27

    Article  CAS  Google Scholar 

  • Fraanje PJ (1997) Cascading of pine wood. Res Con Rec 19:21–28

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N (2007) Overview and methodology. ecoinvent report no. 1. Swiss Center for Life Cycle Inventories, Dübendorf

    Google Scholar 

  • Gärtner S, Hienz G, Keller H, Müller-Lindenlauf M (2013) Gesamtökologische Bewertung der Kaskadennutzung von Holz. Umweltauswirkungen stofflicher und energetischer Holznutzungssysteme im Vergleich, Heidelberg

    Google Scholar 

  • Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, van Struijs J, Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition Report I: Characterisation

  • Guinée JB (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht; Boston

    Google Scholar 

  • Härtl F, Knoke T (2014) The influence of the oil price on timber supply. Forest Policy Econ 39:32–42

    Article  Google Scholar 

  • Heijungs R, Guinée JB (2007) Allocation and ‘what-if’ scenarios in life cycle assessment of waste management systems. Waste Manage 27(8):997–1005

    Article  Google Scholar 

  • Jungmeier G, Werner F, Jarnehammar A, Hohenthal C, Richter K (2002) Allocation in LCA of wood-based products. Experiences of Cost Action E9. Part I. Methodology. Int J Life Cycle Assess 7(5):290–294

    Article  Google Scholar 

  • Loth R, Hanheide M (2004) Entwicklung eines mehrstufigen Anlagenverfahrens zur Verarbeitung von Restholz zur Erzeugung von hochwertigen OSB-Spänen für die Herstellung von OSB-Platten. Abschlussbericht, Bielefeld

    Google Scholar 

  • Mantau U (2012) Holzrohstoffbilanz Deutschland. Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung 1987 bis 2015, Hamburg

  • Mantau U, Bilitewski B (2010) Stoffstrom-Modell- Holz 2007. Rohstoffströme und CO2-Speicherung in der Holzverwendung. Forschungsbericht für das Kuratorium für Forschung und Technik des Verbandes der Deutschen Papierfabriken e.V. (VDP), Celle

  • Mantau U, Saal U, Prins K, Steierer F, Lindner M (2010) EUwood—real potential for changes in growth and use of EU forests. Final report, Hamburg/Germany

    Google Scholar 

  • Nguyen TLT, Hermansen JE (2012) System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Appl Energ 89(1):254–261

    Article  CAS  Google Scholar 

  • Pawelzik P, Carus M, Hotchkiss J, Narayan R, Selke S, Wellisch M, Weiss M, Wicke B, Patel M (2013) Critical aspects in the life cycle assessment (LCA) of bio-based materials—reviewing methodologies and deriving recommendations. Res Con Rec 73:211–228

    Article  Google Scholar 

  • Rüter S, Diederichs S (2012) Ökobilanz-Basisdaten für Bauprodukte aus Holz. Arbeitsbericht aus dem Institut für Holztechnologie und. Holzbiologie, Hamburg

    Google Scholar 

  • Sathre R, Gustavsson L (2006) Energy and carbon balances of wood cascade chains. Res Con Rec 47:332–355

    Article  Google Scholar 

  • Sathre R, O’Connor J (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Pol 13(2):104–114

    Article  CAS  Google Scholar 

  • Schwarzbauer P, Stern T (2010) Energy vs. material: economic impacts of a “wood-for-energy scenario” on the forest-based sector in Austria —a simulation approach. Forest Policy Econ 12(1):31–38

    Article  Google Scholar 

  • Sikkema R, Junginger M, McFarlane P, Faaij A (2013) The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy—a case study on available forest resources in Canada. Env Sci Pol 31:96–108

    Article  Google Scholar 

  • Werner F, Richter K (2007) Wooden building products in comparative LCA. A literature review. Int J Life Cycle Assess 12(7):470–479

    CAS  Google Scholar 

  • Werner F, Taverna R, Hofer P, Richter K (2005) Carbon pool and substitution effects of an increased use of wood in buildings in Switzerland: first estimates. Ann For Sci 62(8):889–902

    Article  CAS  Google Scholar 

  • Werner F, Althaus H, Richter K, Scholz RW (2007) Post-consumer waste wood in attributive product LCA. Context specific evaluation of allocation procedures in a functionalistic conception of LCA. Int J Life Cycle Assess 12(3):160–172

    CAS  Google Scholar 

  • Werner F, Taverna R, Hofer P, Thürig E, Kaufmann E (2010) National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Env Sci Pol 13(1):72–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding by the Bavarian State Ministry of Food, Agriculture and Forestry. The authors wish to thank Nathaniel Smith for language correction and the three reviewers for valuable comments on a previous version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Höglmeier.

Additional information

Responsible editor: Niels Jungbluth

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höglmeier, K., Weber-Blaschke, G. & Richter, K. Utilization of recovered wood in cascades versus utilization of primary wood—a comparison with life cycle assessment using system expansion. Int J Life Cycle Assess 19, 1755–1766 (2014). https://doi.org/10.1007/s11367-014-0774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0774-6

Keywords

Navigation