Skip to main content

Advertisement

Log in

Sea-use impact category in life cycle assessment: state of the art and perspectives

  • LAND USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The present study provides a review on sea-use impacts and how they are handled in life cycle assessments (LCA). It aims at defining the impact pathways for occupation and transformation impacts on marine ecosystems due to human activities (constructions, fishing, aquaculture, navigation).

Methods

First, a review was performed on human interventions leading to environmental impacts in marine areas and on additional fishery-related impact categories used in LCA of seafood, in order to identify the main methodological deficiencies existing in LCA of seafood products. Second, the sea-use impact category has been defined, by detailing the human interventions leading to impacts on the marine environment and which should be accounted for in LCA. Subsequently, the identification and description of the possible impact pathways linking activities and interventions to impact categories are carried out at endpoint and midpoint levels. This assessment has been based on a review of existing methods of land use, and suggests the use of certain indicators, which could be available for different types of marine activities and ecosystems.

Results

This study highlights the needs to account for impacts of human activities due to sea use. Additional indicators have often been added in LCA of seafood, to assess the impacts of seafloor destruction and biomass removal. By extending the scope to other activities than fisheries, many interventions lead to impacts on marine ecosystems: biomass removal and benthic construction, invasive species release, shading, artificial habitat creation, noise, turbidity, and changes in original habitat availability. The impact pathway definition and the identification of the most relevant methods for sea use highlighted the need to assess impacts on ecosystem services (life support functions, global material cycling, and detoxification of pollutants) and on biodiversity as well as biotic resource depletion.

Conclusions

A consensus for biotic resource depletion assessment still needs to be found despite recent innovative proposals. For the sea-use impact assessment, methods using species-area relationships, as well as methods focusing on ecosystem services, appear particularly relevant. In a context of strong marine resource overexploitation, and limited marine biodiversity data, the deficiencies in biomass production capability (provisioning services) could be the first stage of sea-use development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agardy T, Alder J (2005) Coastal systems. In: Ecosystems and human well-being: current state and trends. pp 513–549. http://www.maweb.org/documents/document.288.aspx.pdf. Accessed 25 Apr 2012.

  • Aubin J, Papatryphon E, Van der Werf HMG et al (2006) Characterisation of the environmental impact of a turbot (Scophthalmus maximus) re-circulating production system using life cycle assessment. Aquaculture 261(4):1259–1268. doi:10.1016/j.aquaculture.2006.09.008

    Article  Google Scholar 

  • Aubin J, Papatryphon E, Van der Werf HMG, Chatzifotis S (2009) Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J Clean Prod 17(3):354–361. doi:10.1016/j.jclepro.2008.08.008

    Article  CAS  Google Scholar 

  • Avadi A, Fréon P (2013) Life cycle assessment of fisheries: a review for fisheries scientists and managers. Fish Res 143:21–38. doi:10.1016/j.fishres.2013.01.006

    Article  Google Scholar 

  • Baine M (2001) Artificial reefs: a review of their design, application, management and performance. Ocean Coast Manage 44:241–259. doi:10.1016/S0964-5691(01)00048-5

    Article  Google Scholar 

  • Bare JC (2002) Traci. J Ind Ecol 6:49–78. doi:10.1162/108819802766269539

    Article  Google Scholar 

  • Bastianoni S (2002) Use of thermodynamic orientors to assess the efficiency of ecosystems: a case study in the Lagoon of Venice. TheScientificWorldJOURNAL 2:255–260. doi:10.1100/tsw.2002.88

    Article  Google Scholar 

  • Beck T, Bos U, Wittstock B et al. (2010) LANCA® Land use indicator value calculation in life cycle assessment—method report. pp 67. http://www.lbp-gabi.de/files/lanca_website.pdf. Accessed 28 Mar 2011

  • Blonk H, Lindeijer E, Broers J (1997) Towards a methodology for taking physical degradation of ecosystems into account in LCA. Int J Life Cycle Assess 2:91–98. doi:10.1007/BF02978766

    Article  Google Scholar 

  • Bosma R, Anh PT, Potting J (2011) Life cycle assessment of intensive striped catfish farming in the Mekong Delta for screening hotspots as input to environmental policy and research agenda. Int J Life Cycle Assess 16:903–915. doi:10.1007/s11367-011-0324-4

    Article  Google Scholar 

  • Botsford LW, Castilla JC, Peterson CH (1997) The management of fisheries and marine ecosystems. Science 277:509–515. doi:10.1126/science.277.5325.509

    Article  CAS  Google Scholar 

  • Brandão M, Mila i Canals L (2012) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 1–10. doi: 10.1007/s11367-012-0381-3

  • BSI (2011) Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. pp 38. http://www.bsigroup.com/upload/Standards%20&%20Publications/Energy/PAS2050.pdf Accessed 7 August 2012

  • Calvert SE (1987) Oceanographic controls on the accumulation of organic matter in marine sediments. Geol Soc, Lond, Spec Publ 26:137–151. doi:10.1144/GSL.SP.1987.026.01.08

    Article  Google Scholar 

  • Charpy-Roubaud C, Sournia A (1990) The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar Microb Food Webs 4:31–57

    Google Scholar 

  • Costello M (2009) Distinguishing marine habitat classification concepts for ecological data management. Mar Ecol-Prog Ser 397:253–268. doi:10.3354/meps08317

    Article  Google Scholar 

  • Curran M, De Baan L, De Schryver A et al (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45:70–79. doi:10.1021/es101444k

    Article  CAS  Google Scholar 

  • de Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA : a global approach. Int J Life Cycle Assess 18(6):1216–1230. doi:10.1007/s11367-012-0412-0

    Article  Google Scholar 

  • Dewulf J, Bösch ME, Meester BD et al (2007) Cumulative Exergy Extraction from the Natural Environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environ Sci Technol 41:8477–8483. doi:10.1021/es0711415

    Article  CAS  Google Scholar 

  • Diaz S, Tilman D, Fargione L (2005) Biodiversity regulation of ecosystem services. In: Ecosystems and human well-being: current state and trends. pp 297–329. http://www.millenniumassessment.org/documents/document.280.aspx.pdf. Accessed 08 Aug 2010.

  • Efole Ewoukem T, Aubin J, Mikolasek O et al (2012) Environmental impacts of farms integrating aquaculture and agriculture in Cameroon. J Clean Prod 28:208–214. doi:10.1016/j.jclepro.2011.11.039

    Article  Google Scholar 

  • Ellingsen H, Aanondsen A (2006) Environmental impacts of wild caught cod and farmed salmon—a comparison with chicken. Int J Life Cycle Assess 11:60–65. doi:10.1065/lca2006.01.236

    Article  Google Scholar 

  • Emanuelson A, Ziegler F, Pihl L et al. (2012) Overfishing, overfishedness and wasted potential yield: new impact categories for biotic resources in LCA. In; 8th International Conference on LCA Food 2012 - Life Cycle Assessment in the Agri-Food Sector. Saint-Malo (France), pp 511–516

  • Emanuelsson A, Flysjö A, Thrane M, Ndiaye V, Eichelsheim JL, Ziegler F (2008) Life cycle assessment of southern pink shrimp products from Senegal. In: In: 6th International Conference on Life Cycle Assessment in the Agri-Food Sector, Zurich., pp 1–9

    Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206. doi:10.1126/science.281.5374.200

    Article  CAS  Google Scholar 

  • FAO (2010) Part 1: World review of fisheries and aquaculture. In: State of world fisheries and aquaculture, 2010. FAO, Rome, Italy, pp 3–89

  • Ford JS, Pelletier NL, Ziegler F et al (2012) Proposed local ecological impact categories and indicators for life cycle assessment of aquaculture. J Ind Ecol 16:254–265. doi:10.1111/j.1530-9290.2011.00410.x

    Article  Google Scholar 

  • Geider RJ, Delucia EH, Falkowski PG et al (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Change Biol 7:849–882. doi:10.1046/j.1365-2486.2001.00448.x

    Article  Google Scholar 

  • Geyer R, Stoms DM, Lindner JP et al (2010) Coupling GIS and LCA for biodiversity assessments of land use. Int J Life Cycle Assess 15:454–467. doi:10.1007/s11367-010-0170-9

    Article  CAS  Google Scholar 

  • Goedkoop M, Spriensma R (2001) The Eco-Indicator 99. A damage oriented method for life cycle impact assessment. Methodology Report. PRé Consultants, Amersfoort, pp 132

  • Goedkoop M, Heijungs R, Huijbregts M et al. (2009) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; first edition Report I. Den Haag, pp125

  • Gollasch S, David M, Voigt M et al (2007) Critical review of the IMO international convention on the management of ships’ ballast water and sediments. Harmful Algae 6:585–600. doi:10.1016/j.hal.2006.12.009

    Article  Google Scholar 

  • Graham M (1935) Modern theory of exploiting a fishery, and application to North Sea trawling. ICES J Mar Sci 10:264–274. doi:10.1093/icesjms/10.3.264

    Article  Google Scholar 

  • Guinée J, Gorrée M, Heijungs R et al. (2001) Life cycle assessment—An operational guide to the ISO standards. p11. http://media.leidenuniv.nl/legacy/new-dutch-lca-guide-part-1.pdf. Accessed 30 March 2011

  • Haberl H, Weisz H (2007) The potential use of the Materials and Energy Flow Analysis (MEFA) framework to evaluate the environmental costs of agricultural production systems and possible applications to aquaculture. In: Comparative assessment of the environment costs of aquaculture and other food production sectors: methods of meaningful comparisons. FAO, Rome (Italy), pp 97–119

  • Hackradt CW, Félix-Hackradt FC, García-Charton JA (2011) Influence of habitat structure on fish assemblage of an artificial reef in southern Brazil. Mar Environ Res 72:235–247. doi:10.1016/j.marenvres.2011.09.006

    Article  CAS  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science.1149345

    Article  CAS  Google Scholar 

  • Heijungs R, Guinée J, Huppes G (1997) Impact categories for natural resources and land use. CML report 138. https://openaccess.leidenuniv.nl/dspace/bitstream/1887/8070/1/11_500_002.pdf. Accessed 10 August 2010

  • Ii R, Yamaguchi K, Okada A et al. (2008) Land use damage assessment and its application on resource extraction and waste landfill impact categories in LIME2. New Energy and Industrial Technology Development Organization of Japan. http://www.pacific.co.jp/thesis/item/environment_59.pdf. Accessed 02 February 2011

  • ILCD (2010) International Reference Life Cycle Data System (ILCD) Handbook - Framework and requirements for LCIA models and indicators. European Commission - Joint Research Centre - Institute for Environment and Sustainability, Luxembourg. lct.jrc.ec.europa.eu/…/ILCD34 Handbook-LCIA-Framework-requirements-online-12March2010.pdf. Accessed 07 July 2012.

  • ILCD (2011) Recommendations for life cycle impact assessment in the European context. pp 143. http://lct.jrc.ec.europa.eu/pdf-directory/Recommendation-of-methods-for-LCIA-def.pdf. Accessed 29 October 2012.

  • IMO (2004) International convention for the control and management of ship’s ballast water and sediments. http://www.imo.org. Accessed 23 Nov 2011.

  • IMO (2011) Status of Conventions summary. http://www.imo.org/About/Conventions/StatusOfConventions/Pages/Default.aspx. Accessed 23 November 2011.

  • Inger R, Attrill MJ, Bearhop S et al (2009) Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J Appl Ecol 46:1145–1153. doi:10.1111/j.1365- 2664.2009.01697.x

    Google Scholar 

  • Jeanneret P, Baumgartner DU, Knuchel RF, Gaillard G (2008) A new LCIA method for assessing impacts of agricultural activities on biodiversity (SALCA-Biodiversity). In: Life Cycle Assessment in the Agri-Food Sector. Thomas Nemecek and Gérard Gaillard, Zurich, Switzerland, pp 34–39

  • Jerbi MA, Aubin J, Garnaoui K et al (2011) Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquacult Eng 46:1–9. doi:10.1016/j.aquaeng.2011.10.001

    Article  Google Scholar 

  • Johnson M, Boelke C, Chiarella L, et al. (2008) Impacts to marine fisheries habitat from nonfishing activities in the Northeastern United States. pp 322. http://www.fpir.noaa.gov/Library/HCD/NOAA%20Technical%20Memo%20NMFS-NE-209.pdf. Accessed 19 Oct 2012

  • Jolliet O, Margni M, Charles R et al (2003) IMPACT 2002+: A new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330. doi:10.1007/BF02978505

    Article  Google Scholar 

  • Kaiser MJ, Collie JS, Hall SJ et al (2002) Modification of marine habitats by trawling activities: prognosis and solutions. Fish Fisheries 3:114–136. doi:10.1046/j.1467-2979.2002.00079.x

    Article  Google Scholar 

  • Koellner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8:293–311. doi:10.1016/S0959-6526(00)00026-3

    Article  Google Scholar 

  • Koellner T (2002) Land use in product life cycles and its consequences for ecosystem quality. Int J Life Cycle Assess 7:130–130. doi:10.1007/BF02978857

    Article  Google Scholar 

  • Koellner T, Scholz R (2008) Assessment of land use impacts on the natural environment. Part 2: generic characterization factors for local species diversity in Central Europe. Int J Life Cycle Assess 13:32–48. doi:10.1065/lca2006.12.292.2

    Google Scholar 

  • Koellner T, Hersperger AM, Wohlgemuth T (2004) Rarefaction method for assessing plant species diversity on a regional scale. Ecography 27:532–544. doi:10.1111/j.0906-7590.2004.03832.x

    Article  Google Scholar 

  • Koellner T, De Baan L, Beck T et al (2013a) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202. doi:10.1007/s11367-013-0579-z

    Article  Google Scholar 

  • Koellner T, De Baan L, Beck T et al (2013b) Principles for life cycle inventories of land use on a global scale. Int J Life Cycle Assess 18:1203–1215. doi:10.1007/s11367-012-0392-0

    Article  Google Scholar 

  • Langlois J, Hélias A, Delgenes JP, Steyer JP (2011) Review on land use considerations in life cycle assessment: methodological perspectives for marine ecosystems, Towards Life Cycle Sustainability Management. Finkbeiner, M., Berlin, pp 85–96

    Google Scholar 

  • Langlois J, Fréon P, Delgenes JP et al. (2012) Biotic resources extraction impact assessment in LCA of fisheries. In: 8th International Conference on Life Cycle Assessment in the Agri-Food Sector. Saint-Malo (France), pp 517–522

  • Larkin PA (1977) An epitaph for the concept of maximum sustained yield. T Am Fish Soc 106:1–11. doi:10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2

    Article  Google Scholar 

  • Libralato CM, Tudela S et al (2008) Novel index for quantification of ecosystem effects of fishing as removal of secondary production. Mar Ecol-Prog Ser 355:107–129. doi:10.3354/meps07224

    Article  Google Scholar 

  • Lindeijer E (2000) Biodiversity and life support impacts of land use in LCA. J Clean Prod 8:313–319. doi:10.1016/S0959-6526(00)00025-1

    Article  Google Scholar 

  • Lindeijer E, Kok I, Eggels P, Alfers A (2002) Improving and testing a land use methodology in LCA. Including case-studies on bricks, concrete and wood. pp 131. http://en.scientificcommons.org/18266238. Accessed 01 Sept 2010

  • Marine Biological Association of the United Kingdom (2004) Marine Life 1 Information network: biology and sensitivity key information sub-programme. http://www.marlin.ac.uk/. Accessed 25 Oct 2012

  • Mattila T, Seppälä J, Nissinen A, Mäenpää I (2011) Land use impacts of industries and products in the Finnish economy: a comparison of three indicators. Biomass Bioenerg 35:4781–4787. doi:10.1016/j.biombioe.2011.02.052

    Article  Google Scholar 

  • McCarthy E (2004) International regulation of underwater sound: establishing rules and standards to address ocean noise pollution. Springer, pp 287

  • Michelsen O (2007) Assessment of land use impact on biodiversity. Int J Life Cycle Assess 13:22–31. doi:10.1065/lca2007.04.316

    Google Scholar 

  • Michelsen O, Cherubini F, Stromman A (2012) Impact assessment of biodiversity and carbon pools from land use and land use changes in LCA, exemplified with forestry operations in Norway. J Ind Ecol 16:231–242. doi:10.1111/j.1530-9290.2011.00409.x

    Article  Google Scholar 

  • Mila i Canals L, Bauer C, Depestele J et al (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12:5–15. doi:10.1065/lca2006.05.250

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC. pp 86. http://www.millenniumassessment.org/documents/document.354.aspx.pdf. Accessed 25 April 2012

  • Moura ACB (2010) Experimental study of the macrobenthic colonisation and secondary production in the artificial reefs of Algarve coast. Universidade do Algarve

  • Muller-Wenk R, Brandao M (2010) Climatic impact of land use in LCA-carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15:172–182. doi:10.1007/s11367-009-0144-y

    Article  CAS  Google Scholar 

  • Munkung R, Gheewala SH (2007) Use of Life Cycle Assessment (LCA) to compare the environmental impacts of aquaculture and agri-food products. In: Comparative assessment of the environment costs of aquaculture and other food production sectors: methods of meaningful comparisons. FAO, Rome (Italy), pp 87–96

  • Nakagawa A, Ii R, Abe K et al (2002) Development of life-cycle impact assessment method for land use. Construction of the framework of the method and calculation of the damage factors by NPP. EnvironSyst Res 30:109–118

    Google Scholar 

  • Neigel JE (2003) Species-area relationships and marine conservation. Ecol Appl 13:138–145. doi:10.1890/1051-0761(2003)013[0138:SARAMC]2.0.CO;2

    Article  Google Scholar 

  • Nelson GC (2005) Biodiversity. In: ecosystems and human well-being: current state and trends. Rashid Hassan, Robert Scholes, Neville Ash, Washington, Covelo, London, pp 77–122.

  • Nilsson P, Ziegler F (2007) Spatial distribution of fishing effort in relation to seafloor habitats in the Kattegat, a GIS analysis. Aquat Conserv Mar Freshwat Ecosyst 17:421–440. doi:10.1002/aqc.792

    Article  Google Scholar 

  • Núñez M, Antón A, Muñoz P, Rieradevall J (2013) Inclusion of soil erosion impacts in LCA on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18(4):755–767. doi:10.1007/s11367-012-0525-5

    Article  Google Scholar 

  • Papatryphon E, Petit J, Kaushik SJ, Van der Werf HMG (2004) Environmental 1 impact assessment of salmonid feeds using life cycle assessment (LCA). Ambio 33:316–323. doi:10.1579/0044-7447-33.6.316

    Google Scholar 

  • Parker RWR, Tyedmers PH (2011) Uncertainty and natural variability in the ecological footprint of fisheries: a case study of reduction fisheries for meal and oil. Ecol Indic. doi:10.1016/j.ecolind.2011.06.015

    Google Scholar 

  • Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257. doi:10.1038/374255a0

    Article  CAS  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J et al (1998) Fishing down marine food webs. Science 279:860–863. doi:10.1126/science.279.5352.860

    Article  CAS  Google Scholar 

  • Pauly D, Bakun A, Authors C, Christensen V (2005) Marine fisheries systems. in: ecosystems and human well-being: current state and trends. pp 477–511. http://www.millenniumassessment.org/documents/document.287.aspx.pdf. Accessed 25 Aug 2010.

  • Pelletier NL, Ayer NW, Tyedmers PH et al (2007) Impact categories for life cycle assessment research of seafood production systems: review and prospectus. Int J Life Cycle Assess 12:414–421. doi:10.1065/lca2006.09.275

    Article  Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45:5761–5768. doi:10.1021/es1041755

    Article  CAS  Google Scholar 

  • Ramos S, Vázquez-Rowe I, Artetxe I et al (2011) Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the timeline delimitation in fishery LCA studies. Int J Life Cycle Assess 16:599–610. doi:10.1007/s11367-011-0304-8

    Article  Google Scholar 

  • Ricard D, Minto C, Jensen OP, Baum JK (2012) Examining the knowledge base and status of commercially exploited marine species with the RAM legacy stock assessment database. Fish Fish 13(4):380–38. doi:10.1111/j.1467-2979.2011.00435.x

    Article  Google Scholar 

  • Roesijadi G, Copping AE, Husemann MH et al. (2008) Techno-economic feasibility analysis of offshore seaweed framing for bioenergy and biobased products. pp 115. http://www.scribd.com/doc/16595766/Seaweed-Feasibility-Final-Report. Accessed 19 Oct 2012

  • Ruffin KK (1998) The persistence of anthropogenic turbidity plumes in a shallow water estuary. Estuar Coast Shelf S 47:579–592. doi:10.1006/ecss.1998.0366

    Article  Google Scholar 

  • Saad R, Margni M, Koellner T et al (2011) Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. Int J Life Cycle Assess 16:198–211. doi:10.1007/s11367-011-0258-x

    Article  Google Scholar 

  • Schaefer MB (1954) Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Bull IATTC 1:27–56. doi:10.1139/f57-025

    Google Scholar 

  • Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16:1929–1942. doi:10.1016/j.jclepro.2008.01.004

    Article  Google Scholar 

  • Thrane M (2004) Environmental impacts from Danish Fish Products—hot spots and environmental policies. Aalborg University, Denmark, PhD Dissertation

    Google Scholar 

  • Thrane M (2006) LCA of Danish fish products. New methods and insights. Int J Life Cycle Assess 11(1):66–74

    Article  Google Scholar 

  • Thrane M, Ziegler F, Sonesson U (2009) Eco-labelling of wild-caught seafood products. J Clean Prod 17:416–423. doi:10.1016/j.jclepro.2008.08.007

    Article  Google Scholar 

  • Udo de Haes H, Finnveden G, Goedkoop M et al. (2002) Life-cycle impact assessment: striving towards best practice. Society of Environment Toxicology and Chemistry (SETAC), pp 249

  • UNEP (1993) Text of the convention on biological diversity. United Nations, Rio de janeiro.http://www.cbd.int/convention/text/. Accessed 05 Apr 2011

  • Vázquez-Rowe I, Moreira MT, Feijoo G (2012) Inclusion of discard assessment indicators in fisheries life cycle assessment studies. Expanding the use of fishery-specific impact categories. Int J Life Cycle Assess 17(5):535–549

    Article  CAS  Google Scholar 

  • Wagendorp T, Gulinck H, Coppin P, Muys B (2006) Land use impact evaluation 1 in life cycle assessment based on ecosystem thermodynamics. Energy 31:112–125. doi:10.1016/j.energy.2005.01.002

    Article  Google Scholar 

  • Wallace S (2000) Seafood watch. http://www.montereybayaquarium.org/cr/cr_seafoodwatch/sfw_aboutsfw.aspx?c=ln. Accessed 14 Dec 2011

  • Weidema BP, Lindeijer E (2001) Physical impacts of land use in product life cycle assessment. pp 52.http://www.lca-net.com/files/gaps9.pdf. Accessed 01 Sept 2010

  • Zhang Y, Singh S, Bakshi BR (2010) Accounting for ecosystem services in life cycle assessment, Part I: a critical review. Environ Sci Technol 44:2232–2242. doi:10.1021/es9021156

    Article  CAS  Google Scholar 

  • Ziegler F, Valentinsson D (2008) Environmental life cycle assessment of Norway lobster (Nephrops norvegicus) caught along the Swedish west coast by creels and conventional trawls—LCA methodology with case study. Int J Life Cycle Assess 13:487–497. doi:10.1007/s11367-008- 0024-x

    Article  CAS  Google Scholar 

  • Ziegler F, Nilsson P, Mattsson B, Walther Y (2003) Life cycle assessment of frozen cod fillets including fishery-specific environmental impacts. Int J Life Cycle Assess 8:39–47. doi:10.1007/BF02978747

    CAS  Google Scholar 

  • Ziegler F, Eichelsheim JL, Emanuelsson A et al (2009) Life cycle assessment of southern pink shrimp products from Senegal. FAO, Rome (Italy)

    Google Scholar 

  • Ziegler F, Emanuelsson A, Eichelsheim JL et al (2011) Extended life cycle assessment of southern pink shrimp products originating in Senegalese artisanal and industrial fisheries for export to Europe. J Ind Ecol 15:527–538. doi:10.1111/j.1530-9290.2011.00344.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliette Langlois.

Additional information

Responsible editor: Rainer Zah

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langlois, J., Fréon, P., Steyer, JP. et al. Sea-use impact category in life cycle assessment: state of the art and perspectives. Int J Life Cycle Assess 19, 994–1006 (2014). https://doi.org/10.1007/s11367-014-0700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0700-y

Keywords

Navigation