Skip to main content
Log in

Age-related cellular changes in the long-lived bivalve A. islandica

  • Published:
AGE Aims and scope Submit manuscript

Abstract

One of the biggest challenges to studying causes and effects of aging is identifying changes in cells that are related to senescence instead of simply the passing of chronological time. We investigated two populations of the longest living non-colonial metazoan, Arctica islandica, with lifespans that differed sixfolds. Of four investigated parameters (nucleic acid oxidation, protein oxidation, lipid oxidation, and protein instability), only nucleic acid oxidation increased with age and correlated with relative lifespan. Nucleic acid oxidation levels increased significantly faster and were significantly higher in the shorter-lived than the longer-lived population. In contrast, neither protein oxidation, lipid oxidation, nor protein stability changed over time. Protein resistance to unfolding stress when treated with urea was significantly lower overall in the shorter-lived population, and lipid peroxidation levels were higher in the longer-lived population. With the exception of nucleic acid oxidation, damage levels of A. islandica do not change with age, indicating excellent cellular maintenance in both populations. Since correlations between nucleic acid oxidation and age have also been shown previously in other organisms, and nucleic acid oxidation accumulation rate correlates with relative age in both investigated populations, nucleic acid oxidation may reflect intrinsic aging mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abele D, Strahl J et al (2008) Imperceptible senescence: ageing in the ocean quahog Arctica islandica. Free Radic Res 42(5):474–480

    Article  CAS  PubMed  Google Scholar 

  • Andziak B, O’Connor TP et al (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5(6):463–471

    Article  CAS  PubMed  Google Scholar 

  • Austad SN (2010) Cats, “rats”, and bats: the comparative biology of aging in the 21st century. Integr Comp Biol 50(5):783–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19(12):1420–1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basova L, Begum S et al (2012) Age dependent patterns of antioxidants in Arctica islandica from six regionally separate populations with different life spans. Aquat Biol 14:141–152

    Article  Google Scholar 

  • Baumard P, Budzinski H et al (1999) Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations. Mar Environ Res 47(1):17–47

    Article  CAS  Google Scholar 

  • Begum S, Basova L et al (2010) Growth and energy budget models of the bivalve Arctica islandica at six different sites in the Northeast Atlantic realm. J Shellfish Res 29(1):107–115

    Article  Google Scholar 

  • Blagosklonny MV (2006) Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 5(18):2087–2102

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2008) Aging: ROS or TOR. Cell Cycle 7(21):3344–3354

    Article  CAS  PubMed  Google Scholar 

  • Buffenstein R (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 178(4):439–445

    Article  PubMed  Google Scholar 

  • Butler RN, Sprott R et al (2004) Aging: the reality biomarkers of aging: from primitive organisms to humans. J Gerontol A: Biol Med Sci 59(6):B560–B567

    Article  Google Scholar 

  • Butler PG, Wanamaker AD Jr et al (2013) Variability of marine climate on the North Icelandic shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr Palaeoclimatol Palaeoecol 373:141–151

    Article  Google Scholar 

  • Campisi J (1996) Replicative senescence: an old lives’ tale? ETATS-UNIS, Cell Press, Cambridge, MA

    Google Scholar 

  • Chaudhuri AR, de Waal EM et al (2006) Detection of protein carbonyls in aging liver tissue: a fluorescence-based proteomic approach. Mech Ageing Dev 127(11):849–861

    Article  CAS  PubMed  Google Scholar 

  • Conley DJ, Carstensen J et al (2007) Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol Appl 17(sp5):S165–S184

    Article  Google Scholar 

  • Conley DJ, Björck S et al (2009) Hypoxia-related processes in the Baltic Sea. Environ Sci Technol 43(10):3412–3420

    Article  CAS  PubMed  Google Scholar 

  • Csiszar A, Labinskyy N et al (2007) Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging cell 6(6):783–797

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren TG, Weinberg JR, Halanych KM (2000) Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar Biol 137:487–495

    Article  Google Scholar 

  • Gampe J, Vaupel JW, Jeune B, Robine JM (eds) (2010) Supercentenarians. Springer, Berlin

  • Glöckner G, Heinze I et al (2013) The mitochondrial genome of Arctica islandica; phylogeny and variation. PLoS ONE 8(12):e82857

    Article  PubMed Central  PubMed  Google Scholar 

  • Gruber H, Schaible R et al (2014) Telomere-independent ageing in the longest-lived non-colonial animal, Arctica islandica. Exp Gerontol 51:38–45

    Article  CAS  PubMed  Google Scholar 

  • Hamilton ML, Van Remmen H et al (2001) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci 98(18):10469–10474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145

    Article  CAS  PubMed  Google Scholar 

  • Hofer T, Seo AY et al (2006) A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biol Chem 387(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Langdon C, Waldock M (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J Mar Biol Assoc UK 61(02):431–448

    Article  CAS  Google Scholar 

  • Mann R (1982) The seasonal cycle of gonadal development in Arctica islandica from the Southern New England shelf. Fish Bull 80(2):315–326

    Google Scholar 

  • Mecocci P, Fanó G et al (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26(3–4):303–308

    Article  CAS  PubMed  Google Scholar 

  • Morrow JD, Roberts LJ II (1999) Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol 300:3–12

    Article  CAS  PubMed  Google Scholar 

  • Munro D, Blier PU (2014) Age, diet, and season do not affect longevity-related differences in peroxidation index between Spisula solidissima and Arctica islandica. J Gerontol A: Biol Med Sci 70(4):434–43

    Article  Google Scholar 

  • Mutlu-Türkoğlu Ü, İlhan E et al (2003) Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin Biochem 36(5):397–400

    Article  PubMed  Google Scholar 

  • Parent G, Pernet F et al (2008) Remodeling of membrane lipids in gills of adult hard clam Mercenaria during declining temperature. Aquat Biol 3(2):101–109

    Article  Google Scholar 

  • Pérez VI, Buffenstein R et al (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci 106(9):3059–3064

    Article  PubMed Central  PubMed  Google Scholar 

  • Philipp EE, Abele D (2009) Masters of longevity: lessons from long-lived bivalves—a mini-review. Gerontology 56(1):55–65

    Article  PubMed  Google Scholar 

  • Philipp E, Brey T et al (2005a) Chronological and physiological ageing in a polar and a temperate mud clam. Mech Ageing Dev 126(5):598–609

    Article  CAS  PubMed  Google Scholar 

  • Philipp E, Pörtner H-O et al (2005b) Mitochondrial ageing of a polar and a temperate mud clam. Mech Ageing Dev 126(5):610–619

    Article  CAS  PubMed  Google Scholar 

  • Philipp E, Brey T et al (2006) Physiological ageing in a polar and a temperate swimming scallop. Mar Ecol Prog Ser 307:187–198

    Article  Google Scholar 

  • Philipp EE, Wessels W et al (2012) Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions. PLoS One 7(9):e44621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pierce A, deWaal E et al (2006) A novel approach for screening the proteome for changes in protein conformation. Biochemistry 45(9):3077–3085

    Article  CAS  PubMed  Google Scholar 

  • Pride H, Yu Z et al (2015) Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2015.01.046

    PubMed  Google Scholar 

  • Proctor CJ, Kirkwood TBL (2002) Modelling telomere shortening and the role of oxidative stress. Mech Ageing Dev 123(4):351–363

    Article  CAS  PubMed  Google Scholar 

  • Ridgway ID, Richardson CA (2010) Arctica islandica: the longest lived non colonial animal known to science. Rev Fish Biol Fish 21(2):297–310

    Google Scholar 

  • Salmon AB, Leonard S et al (2009) The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 23(7):2317–2326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schöne BR, Fiebig J et al (2005) Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr Palaeoclimatol Palaeoecol 228(1):130–148

    Article  Google Scholar 

  • Sohal RS (2002) Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med 33(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Strahl J, Abele D (2010) Cell turnover in tissues of the long-lived ocean quahog Arctica islandica and the short-lived scallop Aequipecten opercularis. Mar Biol 157(6):1283–1292

    Article  Google Scholar 

  • Strahl J, Philipp E et al (2007) Physiological aging in the Icelandic population of the ocean quahog Arctica islandica. Aquat Biol 1(1):77–83

    Article  Google Scholar 

  • Swaileh KM (1996) Seasonal variations in the concentrations of Cu, Cd, Pb and Zn in Arctica islandica L. (Mollusca: Bivalvia) from Kiel Bay, Western Baltic Sea. Mar Pollut Bull 32(8/9):631–635

    Article  CAS  Google Scholar 

  • Treaster S, Ridgway I et al (2014) Superior proteome stability in the longest lived animal. Age 36(3):1009–1017

    Article  Google Scholar 

  • Turturro A, Witt WW et al (1999) Growth curves and survival characteristics of the animals used in the biomarkers of aging program. J Gerontol A: Biol Med Sci 54(11):B492–B501

    Article  CAS  Google Scholar 

  • Ungvari Z, Krasnikov BF et al (2008) Testing hypotheses of aging in long-lived mice of the genus Peromyscus: association between longevity and mitochondrial stress resistance, ROS detoxification pathways, and DNA repair efficiency. Age 30(2–3):121–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ungvari Z, Ridgway I et al (2011) Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J Gerontol A: Biol Med Sci 66A(7):741–750

    Article  CAS  Google Scholar 

  • Ungvari Z, Sosnowska D et al (2013) Resistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype? J Gerontol A: Biol Med Sci 68(5):521–529

    Article  CAS  Google Scholar 

  • Vermeulen C, Van De Zande L et al (2005) Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster. Biogerontology 6(6):387–395

    Article  CAS  PubMed  Google Scholar 

  • Walton J (1982) The role of limited cell replicative capacity in pathological age change. A review. Mech Ageing Dev 19(3):217–244

    Article  CAS  PubMed  Google Scholar 

  • Witbaard R, Jenness M et al (1994) Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Neth J Sea Res 33(1):91–101

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Philip Rosenstiel and the Institute of Clinical Molecular Biology in Kiel as well as the Excellence Clusters Future Ocean and Inflammation of Interfaces and the Max Planck International Research Network on Aging for financial support. We are also grateful to H. P. Halldorson at the Suðurnes University Research Centre, Sandgerði, Iceland, and the GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, for the support and possibility to collect Arctica islandica in the Baltic Sea and around Iceland. Additionally we want to thank the anonymous reviewer who gave inspiring comments that helped to improve our manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Gruber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17 kb)

ESM 2

(DOCX 14 kb)

ESM 3

(DOCX 14 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruber, H., Wessels, W., Boynton, P. et al. Age-related cellular changes in the long-lived bivalve A. islandica . AGE 37, 90 (2015). https://doi.org/10.1007/s11357-015-9831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9831-8

Keywords

Navigation