Skip to main content
Log in

Aging, glucocorticoids and developmental programming

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Glucocorticoids are pleiotropic regulators of multiple cell types with critical roles in physiological systems that change across the life-course. Although glucocorticoids have been associated with aging, available data on the aging trajectory in basal circulating glucocorticoids are conflicting. A literature search reveals sparse life-course data. We evaluated (1) the profile of basal circulating corticosterone across the life-course from weaning (postnatal day—PND 21), young adult PND 110, adult PND 450, mature adult PND 650 to aged phase PND 850 in a well-characterized homogeneous rat colony to determine existence of significant changes in trajectory in the second half of life; (2) sex differences; and (3) whether developmental programming of offspring by exposure to maternal obesity during development alters the later-life circulating corticosterone trajectory. We identified (1) a fall in corticosterone between PND 450 and 650 in both males and females (p < 0.05) and (2) higher female than male concentrations (p < 0.05). (3) Using our five life-course time-point data set, corticosterone fell at a similar age but from higher levels in male and female offspring of obese mothers. In all four groups studied, there was a second half of life fall in corticosterone. Higher corticosterone levels in offspring of obese mothers may play a role in their shorter life-span, but the age-associated fall occurs at a similar time to control offspring. Although even more life-course time-points would be useful, a five life-course time-point analysis provides important new information on normative and programmed aging of circulating corticosterone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

C:

Control

dG:

Days gestation

PND:

Postnatal day

References

  • Anderson RM, Birnie AK, Koblesky NK, Romig-Martin SA, Radley JJ (2014) Adrenocortical status predicts the degree of age-related deficits in prefrontal structural plasticity and working memory. J Neurosci 34:8387–8397. doi:10.1523/JNEUROSCI.1385-14.2014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bergendahl M, Iranmanesh A, Mulligan T, Veldhuis JD (2000) Impact of age on cortisol secretory dynamics basally and as driven by nutrient-withdrawal stress. J Clin Endocrinol Metab 85:2203–2214. doi:10.1210/jcem.85.6.6628

    CAS  PubMed  Google Scholar 

  • Bowman RE, Maclusky NJ, Diaz SE, Zrull MC, Luine VN (2006) Aged rats: sex differences and responses to chronic stress. Brain Res 1126:156–166. doi:10.1016/j.brainres.2006.07.047

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Challis JR, Newnham JP, Sloboda DM (2013) Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev 34:885–916. doi:10.1210/er.2013-1012

    Article  CAS  PubMed  Google Scholar 

  • Chen KC et al (2013) Glucocorticoid-dependent hippocampal transcriptome in male rats: pathway-specific alterations with aging. Endocrinology 154:2807–2820. doi:10.1210/en.2013-1139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Downs JL, Mattison JA, Ingram DK, Urbanski HF (2008) Effect of age and caloric restriction on circadian adrenal steroid rhythms in rhesus macaques. Neurobiol Aging 29:1412–1422. doi:10.1016/j.neurobiolaging.2007.03.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari E et al (2001) Age-related changes of the hypothalamic-pituitary-adrenal axis: pathophysiological correlates. Eur J Endocrinol 144:319–329

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Li C, Myatt L, Nathanielsz PW, Sun K (2013) Sexually dimorphic effects of maternal nutrient reduction on expression of genes regulating cortisol metabolism in fetal baboon adipose and liver tissues. Diabetes 62:1175–1185. doi:10.2337/db12-0561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang CW, Lui CC, Chang WN, Lu CH, Wang YL, Chang CC (2009) Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer’s disease. J Clin Neurosci 16:1283–1286. doi:10.1016/j.jocn.2008.12.026

    Article  CAS  PubMed  Google Scholar 

  • Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J (2010) Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One 5, e10074. doi:10.1371/journal.pone.0010074

    Article  PubMed Central  PubMed  Google Scholar 

  • Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S, Marceau P (2006) Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 118:e1644–e1649. doi:10.1542/peds.2006-1379

    Article  PubMed  Google Scholar 

  • Langie SA, Lara J, Mathers JC (2012) Early determinants of the ageing trajectory. Best Pract Res Clin Endocrinol Metab 26:613–626. doi:10.1016/j.beem.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  • Maestripieri D, Hoffman CL, Anderson GM, Carter CS, Higley JD (2009) Mother-infant interactions in free-ranging rhesus macaques: relationships between physiological and behavioral variables. Physiol Behav 96:613–619. doi:10.1016/j.physbeh.2008.12.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nathanielsz PW, Ford SP, Long NM, Vega CC, Reyes-Castro LA, Zambrano E (2013) Interventions to prevent adverse fetal programming due to maternal obesity during pregnancy. Nutr Rev 71(Suppl 1):S78–S87. doi:10.1111/nure.12062

    Article  PubMed Central  PubMed  Google Scholar 

  • National Research Council (2011) Explaining divergent levels of longevity in high-income countries. In: Crimmins EM, Preston SH, Cohen B (eds) Panel on understanding divergent trends in longevity in high-income countries. Committee on population, division of behavioral and social sciences and education. The National Academies Press, Washington DC

    Google Scholar 

  • Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, Remacle C, Reusens B (2009) Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52:1133–1142. doi:10.1007/s00125-009-1316-9

    Article  CAS  PubMed  Google Scholar 

  • Peeters GM, van Schoor NM, Visser M, Knol DL, Eekhoff EM, de Ronde W, Lips P (2007) Relationship between cortisol and physical performance in older persons. Clin Endocrinol 67:398–406. doi:10.1111/j.1365-2265.2007.02900.x

    Article  CAS  Google Scholar 

  • Quinn R (2005) Comparing rat’s to human’s age: how old is my rat in people years? Nutrition 21:775–777. doi:10.1016/j.nut.2005.04.002

    Article  PubMed  Google Scholar 

  • Rodriguez JS et al (2012) Maternal obesity in the rat programs male offspring exploratory, learning and motivation behavior: prevention by dietary intervention pre-gestation or in gestation. Int J Dev Neurosci 30:75–81. doi:10.1016/j.ijdevneu.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson AM et al (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51:383–392. doi:10.1161/HYPERTENSIONAHA.107.101477

    Article  CAS  PubMed  Google Scholar 

  • Vega CC, Reyes-Castro LA, Bautista CJ, Larrea F, Nathanielsz PW, Zambrano E (2015) Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes (Lond) 39(4):712–719. doi:10.1038/ijo.2013.150

  • Villamor E, Cnattingius S (2006) Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. Lancet 368:1164–1170. doi:10.1016/S0140-6736(06)69473-7

    Article  PubMed  Google Scholar 

  • Zambrano E, Nathanielsz PW (2013) Mechanisms by which maternal obesity programs offspring for obesity: evidence from animal studies. Nutr Rev 71(Suppl 1):S42–S54. doi:10.1111/nure.12068

    Article  PubMed  Google Scholar 

  • Zambrano E, Martinez-Samayoa PM, Rodriguez-Gonzalez GL, Nathanielsz PW (2010) Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol 588:1791–1799. doi:10.1113/jphysiol.2010.190033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zambrano E et al (2014) Increased central and peripheral glucocorticoid synthesis act as an orchestrator of developmental programming. In: stress and developmental programming of health and disease: beyond phenomenology nova Science Publishers, Inc

  • Zhao ZY, Lu FH, Xie Y, Fu YR, Bogdan A, Touitou Y (2003) Cortisol secretion in the elderly. Influence of age, sex and cardiovascular disease in a Chinese population. Steroids 68:551–555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

LARC is a graduate student from Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México and is a recipient of the CONACyT fellowship; this work was supported by CONACyT 155166 México. We are grateful to Guadalupe L. Rodríguez-González for assistance with the manuscript.

Conflict of interest

The authors have nothing to disclose and have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Nathanielsz.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambrano, E., Reyes-Castro, L.A. & Nathanielsz, P.W. Aging, glucocorticoids and developmental programming. AGE 37, 52 (2015). https://doi.org/10.1007/s11357-015-9774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9774-0

Keywords

Navigation