Skip to main content
Log in

High-dose statin use does not impair aerobic capacity or skeletal muscle function in older adults

  • Published:
AGE Aims and scope Submit manuscript

Abstract

3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are lipid-lowering agents widely employed for atherosclerosis prevention. HMG-CoA reductase blockade reduces skeletal muscle coenzyme Q10 (CoQ10) levels and mitochondrial respiratory chain activities and may produce mild to severe skeletal muscle myopathy. This study investigated whether high-dose statin treatment would result in measurably decreased exercise capacity in older men and women. Maximal oxygen consumption, aerobic endurance, oxygen uptake kinetics, maximal strength, muscular power, and muscular endurance were measured before and after 12 weeks of statin treatment (simvastatin, 80 mg/day) in nine men and one woman, ages 55–76 years, with LDL-cholesterol levels >3.3 mmol/l (mean = 4.2 ± 0.2 mmol/l). Myalgia symptoms were assessed every 4 weeks. As expected, statin treatment resulted in significant decreases in LDL- and total-cholesterol levels (P < 0.01) with no significant changes in HDL-cholesterol or triglyceride levels. No significant changes were observed in aerobic capacity, endurance, oxygen kinetics or any measures of muscle function. No subject reported symptoms of myalgia, cramps, or weakness during the study. In the absence of myalgia or myopathic symptoms, high-dose simvastatin treatment did not impair exercise capacity in hyperlipidemic older individuals. We conclude that decreases in intramuscular CoQ10, in most patients on high dose statin treatment may not be clinically relevant, due to inter-individual variability in the degree of CoQ10 depletion, sensitivity of muscle to decreases in CoQ10, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American College of Sports Medicine (1991) Guidelines for exercise testing and prescription, 4th edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Baechle TR, Earle RW, Wathen D (2000) Resistance training. In: Baechle TR, Earle RW (eds) Essentials of strength training and conditioning. 2nd edn. Human Kinetics, Champaign, pp 406–409

    Google Scholar 

  • Bruckert E, Hayem G, DeJager S, Yau C, Begaud B (2006) Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—The PRIMO Study. Cardiovasc Drugs Ther 19:403–414

    Article  Google Scholar 

  • Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R et al (2004) Comparison of intensive and moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350:1495–1504

    Google Scholar 

  • Caso G, Kelly P, McNurian MA, Lawson WE (2007) Effect of Coenzyme Q10 on myopathic symptoms in patients treated with statins. Am J Cardiol 99:1409–1412

    Article  PubMed  CAS  Google Scholar 

  • Conley K, Jubrias S, Amara CE, Marcinek DJ (2007) Mitochondrial dysfunction: Impact on exercise performance and cellular aging. Exerc Sport Sci Rev 35:43–49

    Article  PubMed  Google Scholar 

  • Davidson MH, Robinson JG (2007) Safety of aggressive lipid management. J Am Coll Cardiol 49:1753–1762

    Article  PubMed  CAS  Google Scholar 

  • England J, Walsh J, Stewart P, Boyd I, Rohan A, Halmagyi G (1995) Mitochondrial myopathy developing on treatment with the HMG CoA reductase inhibitors—simvastatin and pravastatin. Aust N Z J Med 25:374–375

    PubMed  CAS  Google Scholar 

  • Franc S, DeJager S, Bruckert E, Chauvenet M, Giral P, Turpin G (2003) A comprehensive description of muscle symptoms associated with lipid lowering drugs. Cardiovasc Drugs Ther 17:459–465

    Article  PubMed  CAS  Google Scholar 

  • Gaist D, Rodriguez L, Huerta C, Hallas J, Sindrup S (2001) Lipid-lowering drugs and risk of myopathy: a population-based follow-up study. Epidmiology 12:565–569

    Article  CAS  Google Scholar 

  • Johannesson M, Jönsson B, Kjekshus J, Olsson AG, Pedersen TR, Wedel H (1997) Cost effectiveness of simvastatin treatment to lower cholesterol levels in patients with coronary heart disease. Scandinavian Simvastatin Survival Study Group. N Engl J Med 336:332–336

    Article  PubMed  CAS  Google Scholar 

  • Kaikkonen J, Nyyssönen K, Tuomainen T-P, Ristonmaa U, Salonen JT (1999) Determinants of plasma coenzyme Q10 in humans. FEBS Lett 443:163–166

    Article  PubMed  CAS  Google Scholar 

  • Kohrt W, Malley M, Coggan A, Spina R, Ogawa T, Ehsani A et al (1991) Effects of gender, age, and fitness level on response of VO2 max to training in 60–71 yr olds. J Appl Physiol 71:2004–2011

    PubMed  CAS  Google Scholar 

  • Lass A, Kwong LK, Sohal RS (1999) Mitochondrial coenzyme Q content and aging. Biofactors 9:199–205

    PubMed  CAS  Google Scholar 

  • Nawarskas JJ (2005) HMG-CoA reductase inhibitors and coenzyme Q10. Cardiol Rev 13:76–79

    Article  PubMed  Google Scholar 

  • Nissen S, Tuzcu E, Schoenhagen P, Brown BG, Ganz P, Vogel R et al (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis. A randomized controlled trial. JAMA 291:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Nissen S, Tuzcu E, Schoenhagen P, Crowe T, Sasiela WJ, Tsai J et al (2005) Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 352:29–38

    Article  PubMed  CAS  Google Scholar 

  • Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA (2007) Genetic determinants of static intolerance. Lipids Health Dis 6:7–11

    Article  PubMed  Google Scholar 

  • Omar MA, Wilson JP, Cox TS (2001) Rhabdomyolysis and HMG-CoA reductase inhibitors. Ann Pharmacother 35:1096–1107

    Article  PubMed  CAS  Google Scholar 

  • Paiva H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM et al (2005) High-dose statins and skeletal muscle metabolism in humans: A randomized, controlled trial. Clin Pharmacol Ther 78:60–68

    Article  PubMed  Google Scholar 

  • Pasternak RC, Smith SC Jr, Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C (2002) ACC/AHA/NHLBI Clinical Advisory on the Use and Safety of Statins. Stroke 33:2337–2341

    Article  PubMed  Google Scholar 

  • Pedersen TR (2001) Pro and con: low-density lipoprotein cholesterol lowering is and will be the key to the future of lipid management. Am J Cardiol 87:8–12

    Article  Google Scholar 

  • Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL et al (2007) Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 300:1140–1142 doi:10.1126/science.1082889

    Article  Google Scholar 

  • Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL, Kimura BJ et al (2002a) Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med 137:581–585

    PubMed  Google Scholar 

  • Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL, Kimura BJ et al (2002b) Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med 137:581–585

    PubMed  Google Scholar 

  • Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL, Kimura BJ et al (2002c) Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med 137:581–585

    PubMed  Google Scholar 

  • Phillips PS, Phillips CT, Sullivan MJ, Naviaux RK, Haas RH (2004) Statin myotoxicity is associated with changes in the cardiopulmonary function. Atherosclerosis 177:183–188

    Article  PubMed  CAS  Google Scholar 

  • Ploutz-Snyder LL, Giamis EL (2001) Orientation and familiarization to 1RM strength testing in old and young women. J Strength Cond Res 15:519–523

    Article  PubMed  CAS  Google Scholar 

  • Schick BA, Laaksonen R, Frohlich JJ, Paiva H, Lehtimaki T, Humphries KH et al (2007) Decreased skeletal muscle mitochondrial DNA in patients treated with high-dose simvastatin. Clin Pharmacol Ther 81:650–653

    Article  PubMed  CAS  Google Scholar 

  • Sinzinger H, Schmid P, O’Grady J (1999) Two different types of exercise-induced muscle pain without myopathy and CK-elevation during HMG-Co-enzyme-A-reductase inhibitor treatment. Atherosclerosis 143:459–460

    Article  PubMed  CAS  Google Scholar 

  • Thompson PD, Zmuda JM, Domalik LJ, Zimet RJ, Staggers J, Guyton JR (1997) Lovastatin increases exercise-induced skeletal muscle injury. Metabolism 46:1206–1210

    Article  PubMed  CAS  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Aurora Foundation. The results of this study were presented at the Annual Meeting of the American College of Sports Medicine, New Orleans, June 2007. We would like to acknowledge KLRI staff for their assistance with this study, as well as all of our participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinna Traustadóttir.

About this article

Cite this article

Traustadóttir, T., Stock, A.A. & Harman, S.M. High-dose statin use does not impair aerobic capacity or skeletal muscle function in older adults. AGE 30, 283–291 (2008). https://doi.org/10.1007/s11357-008-9070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-008-9070-3

Keywords

Navigation