Skip to main content
Log in

QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The safety assessment process of chemicals requires information on their mutagenic potential. The experimental determination of mutagenicity of a large number of chemicals is tedious and time and cost intensive, thus compelling for alternative methods. We have established local and global QSAR models for discriminating low and high mutagenic compounds and predicting their mutagenic activity in a quantitative manner in Salmonella typhimurium (TA) bacterial strains (TA98 and TA100). The decision treeboost (DTB)-based classification QSAR models discriminated among two categories with accuracies of >96% and the regression QSAR models precisely predicted the mutagenic activity of diverse chemicals yielding high correlations (R 2) between the experimental and model-predicted values in the respective training (>0.96) and test (>0.94) sets. The test set root mean squared error (RMSE) and mean absolute error (MAE) values emphasized the usefulness of the developed models for predicting new compounds. Relevant structural features of diverse chemicals that were responsible and influence the mutagenic activity were identified. The applicability domains of the developed models were defined. The developed models can be used as tools for screening new chemicals for their mutagenicity assessment for regulatory purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afantitis A, Melagraki G, Koutentis PA, Sarimveis H, Kollias G (2011) Ligand-based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and counter propagation artificial neural networks. Eur J Med Chem 46:497–508

    Article  CAS  Google Scholar 

  • Alexander DL, Tropsha A, Winkler DA (2015) Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J Chem Inf Model 55:1316–1322

    Article  CAS  Google Scholar 

  • Ames BN (1984) The detection of environmental mutagens and potential. Cancer 53:2030–2040

    Article  Google Scholar 

  • Armitage JM, Arnot JA, Wania F, Mackay D (2013) Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish. Environ Toxicol Chem 32:115–128

    Article  CAS  Google Scholar 

  • Arnot JA, Gobas FAPC (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23:2343–2355

    Article  CAS  Google Scholar 

  • Ashby J (1985) Fundamental structural alerts to potential carcinogenicity or noncarcinogenicity. Environ Mutagen 7:919–921

    Article  CAS  Google Scholar 

  • Bakken GA, Jurs PC (1999) Prediction of hydroxyl rate constants from molecular structure. J Chem Inf Comput Sci 39:1064–1075

    Article  CAS  Google Scholar 

  • Basak SC, Mills DR, Balaban AT, Gute BD (2001) Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: a hierarchical QSAR approach. J Chem Inf Comput Sci 41:671–678

    Article  CAS  Google Scholar 

  • Basant N, Gupta S (2017) Modeling uptake of nanoparticles in multiple human cells using structure-activity relationships and intercellular uptake correlations. Nanotoxicol 11:20–30

    Article  CAS  Google Scholar 

  • Basant N, Gupta S, Singh KP (2015a) Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches. Chemosphere 139:246–255

    Article  CAS  Google Scholar 

  • Basant N, Gupta S, Singh KP (2015b) Predicting toxicities of diverse chemical pesticides in multiple avian species using tree-based QSAR approaches for regulatory purposes. J Chem Inf Model 55:1337–1348

    Article  CAS  Google Scholar 

  • Basant N, Gupta S, Singh KP (2016a) A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes. Regul Toxicol Pharmacol 77:282–291

    Article  CAS  Google Scholar 

  • Basant N, Gupta S, Singh KP (2016b) QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes. Toxicol Res 5:1029–1038

    Article  CAS  Google Scholar 

  • Basant N, Gupta S, Singh KP (2016c) Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches. SAR QSAR Environ Res 27:67–85

    Article  CAS  Google Scholar 

  • Benigni R (2005) Structure-activity relationship studies of chemical mutagens and carcinogens: mechanistic investigations and prediction approaches. Chem Rev 105:1767–1800

    Article  CAS  Google Scholar 

  • Benigni R, Andreoli C, Giuliani A (1994) QSAR models for both mutagenic potency and activity: application to nitroarenes and aromatic amines. Environ Mol Mutagen 24:208–219

    Article  CAS  Google Scholar 

  • Benigni R, Passerini L, Rodomonte A (2003) Structure–activity relationships for the mutagenicity and carcinogenicity of simple and α-β unsaturated aldehydes. Environ Mol Mutagen 42:136–143

    Article  CAS  Google Scholar 

  • Benigni R, Conti L, Crebelli R, Rodomonte A, Vari MR (2005) Simple and α,β-unsaturated aldehydes: correct prediction of genotoxic activity through structure–activity relationship models. Environ Mol Mutagen 46:268–280

    Article  CAS  Google Scholar 

  • Bhat KL, Hayik S, Sztandera L, Bock CW (2005) Mutagenicity of aromatic and heteroaromatic amines and related compounds: a QSAR investigation. QSAR Comb Sci 24:831–843

    Article  CAS  Google Scholar 

  • Casalegno M, Benfenati E, Sello G (2006) Application of a fragment-based model to the prediction of the genotoxicity of aromatic amines. Internet Electron J Mol Des 5:431–446

    CAS  Google Scholar 

  • Cash GG (2001) Prediction of the genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices. Mutat Res 491:31–37

    Article  CAS  Google Scholar 

  • Cash GG, Anderson B, Mayo K, Bogaczyk S, Tunkel J (2005) Predicting genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices. Mutat Res 585:170–183

    Article  CAS  Google Scholar 

  • Chirico N, Gramatica P (2012) Real external predictivity of QSAR models: part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model 52:2044–2058

    Article  CAS  Google Scholar 

  • Compadre RL, Byrd C, Compadre CM (1998) Comparative QSAR and 3D–QSAR analysis of the mutagenicity of nitroaromatic compounds. In: Devillers J (ed) Comparative QSAR, chapter 3. Taylor & Francis, Washington, ISBN1560327162

  • Cooper JA, Saracci R, Cole P (1979) Describing the validity of carcinogen screening test. Br J Cancer 39:87–89

    Article  CAS  Google Scholar 

  • Cornin MTD, Dearden JC (1995) QSAR in toxicology. 3. Prediction of chronic toxicities. Quant Struct-Act Relat 14:329–334

    Article  Google Scholar 

  • Dearden JC (2016) The history and development of quantitative structure-activity relationships (QSARs). Int J Quantitative Structure-Property Relationships 1:1–44

    Article  Google Scholar 

  • Debnath AK, Compadre RLL, Hanch C (1992) Mutagenicity of quinolines in Salmonella typhimurium TA100. A QSAR study based on hydrophobicity and molecular orbital determinants. Mut Res 280:55–65

    Article  CAS  Google Scholar 

  • Dietterich TG (2000) Ensemble methods in machine learning. Lect Notes Comput Sci 1857:1–15

    Article  Google Scholar 

  • Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification and regression based QSARs. Environ Health Perspect 111:1361–1375

    Article  CAS  Google Scholar 

  • European Commission (2006) Directive 2006/121/EC of the European Parliament and of the Council of 18 December 2006 amending Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances in order to adapt it to Regulation (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and establishing a European Chemicals Agency. Off. J. Eur. Union (2006), L 396/850 of 30.12.2006, Office for Official Publications of the European Communities (OPOCE), Luxembourg

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Fjodorova N, Vracko M, Novic M, Roncaglioni A, Benfenati E (2010) New public QSAR models for carcinogenicity. Chem Cent J 4:1–15

    Article  Google Scholar 

  • Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378

    Article  Google Scholar 

  • Gini G, Ferrari T, Roncaglioni A (2010) The in silico model for mutagenicity. ALTEX 27:117–125

    Google Scholar 

  • Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  • Gramatica P, Sangion A (2016) A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J Chem Inf Model 56:1127–1131

    Article  CAS  Google Scholar 

  • Gramatica P, Consonni V, Pavan M (2003) Prediction of aromatic amines mutagenicity from theoretical molecular descriptors. SAR QSAR Environ Res 14:237–250

    Article  CAS  Google Scholar 

  • Gramatica P, Pilutti P, Papa E (2007) Approaches for externally validated QSAR modelling of nitrated polycyclic aromatic hydrocarbon mutagenicity. SAR QSAR Environ Res 18:169–178

    Article  CAS  Google Scholar 

  • Gupta S, Basant N (2016) Modeling the reactivity of ozone and sulphate radicals towards organic chemicals in water using machine learning approaches. RSC Adv 6:108448–108457

    Article  CAS  Google Scholar 

  • Gupta S, Basant N, Mohan D, Singh KP (2016) Inter-moieties reactivity correlations: an approach to estimate the reactivity endpoints of major atmospheric reactants towards organic chemicals. RSC Adv 6:50297–50305

    Article  CAS  Google Scholar 

  • Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35:1039–1045

    Article  CAS  Google Scholar 

  • Hatch FT, Colvin ME (1997) Quantitative structure-activity (QSAR) relationships of mutagenic aromatic and heterocyclic amines. Mutat Res 376:87–96

    Article  CAS  Google Scholar 

  • Jiang DX, Li Y, Li J, Wang GX (2011) Prediction of the aquatic toxicity of phenols to Tetrahymena pyriformis from molecular descriptors. Int J Environ Res 5:923–938

    CAS  Google Scholar 

  • King RD, Muggleton SH, Srinivasan A, Sternberg MJ (1996) Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc Natl Acad Sci U S A 93:438–442

    Article  CAS  Google Scholar 

  • Leong MK, Lin SW, Chen HB, Tsai FY (2010) Predicting mutagenicity of aromatic amines by various machine learning approaches. Toxicol Sci 116:498–513

    Article  CAS  Google Scholar 

  • Liu S, Cao C, Li Z (1998) Approach to estimation and prediction for normal boiling point (NBP) of alkanes based on a novel molecular distance edge (MDE) vector, lambda. J Chem Inf Comput Sci 38:387–394

    Article  CAS  Google Scholar 

  • Mahjoobi J, Etemad-Shahidi A (2008) An alternative approach for the prediction of significant wave heights based on classification and regression trees. Appl Ocean Res 30:172–177

    Article  Google Scholar 

  • Maran U, Karelson M, Katritzky AR (1999) A comprehensive QSAR treatment of the genotoxicity of heteroaromatic and aromatic amines. Quant Struct-Act Relat 18:03–10

    Article  CAS  Google Scholar 

  • Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phase lysozyme. Biochim Biophys Acta 405:442–451

    Article  CAS  Google Scholar 

  • McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Nat Acad Sci U S A 72:5135–5319

    Article  CAS  Google Scholar 

  • Mitra I, Saha A, Roy K (2010) Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul 36:1067–1079

    Article  CAS  Google Scholar 

  • Moosus M, Maran U (2011) Quantitative structure-activity relationship analysis of acute toxicity of diverse chemicals to Daphnia magna with whole molecule descriptors. SAR QSAR Environ Res 22:757–774

    Article  CAS  Google Scholar 

  • Netzeva TI, Worth AP, Aldenberg A, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klpoman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patliwicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DP, van de Sandt JJM, Tong W, Veith G, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationship. ATLA 33:155–173

    CAS  Google Scholar 

  • Nicolotti O, Gadaleta D, Mangiatordi GF, Catto M, Carotti A (2016) Applicability domain for QSAR models: where theory meets reality. Int J Quantitative Structure-Property Relationships 1. doi:10.4018/IJQSPR.2016010102

  • Nilakantan R, Nunn DS, Greenblatt L, Walker G, Haraki K, Mobilio D (2006) A family of ring system-based structural fragments for use in structure-activity studies: database mining and recursive partitioning. J Chem Inf Model 46:1069–1077

    Article  CAS  Google Scholar 

  • Organization for Economic Cooperation and Development (OECD) (2007) Guidance document on the validation of (quantitative) structure–activity relationships [(Q)SAR] models. ENV/JM/MONO 2(2007):1–154

    Google Scholar 

  • Patlewicz G, Jeliazkova N, Gallegos Saliner A, Worth AP (2008) Toxmatch—a new software tool to aid in the development and evaluation of chemically similar groups. SAR QSAR Environ Res 19:397–412

    Article  CAS  Google Scholar 

  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynska J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178

    Article  CAS  Google Scholar 

  • Reenu, Vikas (2015) Role of exchange and correlation in the real external prediction of mutagenicity: performance of hybrid and meta-hybrid exchange–correlation functionals. RSC Adv 5:29238–29251

    Article  CAS  Google Scholar 

  • Reitermanov Z (2010) Data splitting. WDS’10 Proceedings of contributed papers, part I, pp. 31–36

  • Roy K, Das RN (2011) On Extended Topochemical Atom (ETA) indices for QSPR studies. In: Castro EA, Haghi AK (eds) Advanced methods and applications in chemoinformatics: research progress and new applications. IGI Global, Hershey, pp 380–411

    Google Scholar 

  • Roy K, Kar S, Das RN (2015a) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic, London ISBN: 978-0-12-801505-6

    Google Scholar 

  • Roy K, Kar S, Ambure P (2015b) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29

    Article  CAS  Google Scholar 

  • Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemometr Intell Lab Syst 152:18–33

    Article  CAS  Google Scholar 

  • Shusterman AJ (1992) Predicting chemical mutagenicity by using quantitative structure-activity relationships. In: Finley JW, Robinson SF, Armstrong DJ (eds) Food safety assessment. ACS, Washington, pp 181–190

    Chapter  Google Scholar 

  • Singh KP, Malik A, Singh VK, Mohan D, Sinha S (2005) Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Anal Chim Acta 550:82–91

    Article  CAS  Google Scholar 

  • Singh J, Singh S, Shaik B, Deeb O, Sohani N, Agrawal VK, Khadikar PV (2008) Mutagenicity of nitrated polycyclic aromatic hydrocarbons: a QSAR investigation. Chem Biol Drug Des 71:230–243

    Article  CAS  Google Scholar 

  • Singh KP, Gupta S, Mohan D (2014) Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches. J Hydrol 511:254–266

    Article  CAS  Google Scholar 

  • Singh KP, Gupta S, Basant N (2015) In silico prediction of cellular permeability of diverse chemicals using qualitative and quantitative SAR modeling approaches. Chemometr Intell Lab Syst 140:61–72

    Article  CAS  Google Scholar 

  • Soderman JV (1982) CRC handbook of identified carcinogens and noncarcinogens: carcinogenicity and mutagenicity database. CRC, Boca Raton

    Google Scholar 

  • Takamura-Enya T, Suzuki H, Hisamatsu Y (2006) Mutagenic activities and physicochemical properties of selected nitrobenzanthrones. Mutagenesis 21:399–404

    Article  CAS  Google Scholar 

  • Tawari N, Lele A, Khambete M, Degani M (2014) Mutagenicity prediction for nitroaromatic compounds using QSTR modeling. Int J Pharm Pharm Sci 6:149–157

    CAS  Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Weinheim, Wiley-VCH

    Book  Google Scholar 

  • Toropov AA, Toropova AP (2001) Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graphs of local invariants. Theochem-J Mol Struct 538:287–293

    Article  CAS  Google Scholar 

  • Toropov AA, Toropova AP, Benfenati E (2009) QSAR modelling for mutagenic potency of heteroaromatic amines by optimal SMILES-based descriptors. Chem Biol Drug Des 73:301–312

    Article  CAS  Google Scholar 

  • Toropov AA, Toropova AP, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines. Chemometr Intell Lab Syst 109:94–100

    Article  CAS  Google Scholar 

  • Torres-Cartas S, Martın-Biosca Y, Villanueva-Camanas RM, Sagrado S, Medina-Hernandez MJ (2007) Biopartitioning micellar chromatography to predict mutagenicity of aromatic amines. Eur J Med Chem 42:1396–1402

    Article  CAS  Google Scholar 

  • Votano RJ, Parham M, Hall LM, Hall LH, Kier LB, Oloff S, Tropsha A, Xia Q, Tong W (2004) Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 19:365–377

    Article  CAS  Google Scholar 

  • Vracko M, Mills D, Basak SC (2004) Structure-mutagenicity modelling using counter propagation neural networks. Environ Toxicol Pharmacol 16:25–36

    Article  CAS  Google Scholar 

  • Wong KY, Mercader AG, Saavedra LM, Honarparvar B, Romanelli GP, Duchowicz PR (2014) QSAR analysis on tacrine-related acetylcholinesterase inhibitors. J Biomed Sci 21(84):1–8

    Google Scholar 

  • Worth AP, Bassan A, DeBruijn J, Gallegos-Saliner A, Netzeva T, Patlewicz G, Pavan M, Tsakovska I, Eisenreich S (2007) The role of the European Chemicals Bureau in promoting the regulatory use of (Q)SAR methods. SAR QSAR Environ Res 18:111–125

    Article  CAS  Google Scholar 

  • Xiaodong W, Zhifen L, Daqiang Y, Shushen L, Liansheng W (2005) 2D/3D-QSAR comparative study on mutagenicity of nitroaromatics. Sc China Ser B-Chem 48:246–252

    Article  Google Scholar 

  • Yang-Hua L, Zhi-Xianga Z, Xiao-Long Z, Han-Dong L (2015) Development of QSAR model for predicting the mutagenicity of aromatic compounds. Chinese J Struct Chem 34:324–334

    Google Scholar 

  • Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  CAS  Google Scholar 

  • Zakrzewski SF (1991) Principles of environmental toxicology. ACS, Washington

    Google Scholar 

  • Zhang Z, Niu J, Zhi X (2008) A QSAR model for predicting mutagenicity of nitronaphthalenes and methylnitronaphthalenes. Bull Environ Contam Toxicol 81:498–502

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the CEO, ETRC, Lucknow (NB), and the Director, CSIR-NBRI, Lucknow (SG), for interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Basant.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

ESM 1

(docx 287 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basant, N., Gupta, S. QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes. Environ Sci Pollut Res 24, 14430–14444 (2017). https://doi.org/10.1007/s11356-017-8903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8903-y

Keywords

Navigation