Skip to main content
Log in

Comparison of the phytoremediation potentials of Medicago falcata L. And Medicago sativa L. in aged oil-sludge-contaminated soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Thirteen-year monitoring of the vegetation growing in the industrial and adjacent areas of an oil refinery showed the prevalence of yellow medick (Medicago falcata L.) over other plant species, including alfalfa (Medicago sativa L.). A comparative field study of the two Medicago species established that yellow medick and alfalfa exhibited similar resistance to soil petroleum hydrocarbons and that the pollutant concentration in their rhizosphere was 30% lower than that in the surrounding bulk soil. In laboratory pot experiments, yellow medick reduced the contaminant content by 18% owing to the degradation of the major heavy oil fractions, such as paraffins, naphthenes, and alcohol and benzene tars; and it was more successful than alfalfa. Both species were equally effective in stimulating the total number of soil microorganisms, but the number of hydrocarbon-oxidizing microorganisms, including polycyclic aromatic hydrocarbon degraders, was larger in the root zone of alfalfa. In turn, yellow medick provided a favorable balance of available nitrogen. Both Medicago species equally stimulated the dehydrogenase and peroxidase activities of the soil, and yellow medick increased the activity of soil polyphenol oxidase but reduced the activity of catalase. The root tissue activity of catalase, ascorbate oxidase, and tyrosinase was grater in alfalfa than in yellow medick. The peroxidase activity of plant roots was similar in both species, but nondenaturing polyacrylamide gel electrophoresis showed some differences in the peroxidase profiles of the root extracts of alfalfa and yellow medick. Overall, this study suggests that the phytoremediation potentials of yellow medick and alfalfa are similar, with some differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achuba FI, Okoh PN (2014) Effect of petroleum products on soil catalase and dehydrogenase. Open Journal of Soil Science 4:399–406. doi:10.4236/ojss.2014.412040 Accessed 11 November 2015

    Article  Google Scholar 

  • Adam G, Duncan HJ (1999) Effect of diesel fuel on growth of selected plant species. Environ Geochem Hlth 21:353–357. doi:10.1023/A:1006744603461

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  Google Scholar 

  • Bartha R, Bordeleau L (1969) Cell-free peroxidases in soil. Soil Biol Biochem 1:139–143. doi:10.1016/0038-0717(69)90004-2

    Article  CAS  Google Scholar 

  • Basumatary B, Saikia R, Das HC, Bordoloi S (2013) Field note: phytoremediation of petroleum sludge contaminated field using sedge species, Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) Hassk. Int J Phytoremediat 15:877–888. doi:10.1080/15226514.2012.760520

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 5:653–674

    Google Scholar 

  • Criquet S, Joner E, Leglize P, Leyval C (2000) Anthracene and mycorhiza affect the activity of oxidoreductases in the roots and the rhizosphere of lucerne (Medicago saliva L.). Biotechnol Lett 22:1733–1737. doi:10.1023/A:1005604719909

    Article  CAS  Google Scholar 

  • Di Toro DM, McGrath JA, Stubblefield WA (2007) Predicting the toxicity of neat and weathered crude oil: toxic potential and the toxicity of saturated mixtures. Environ Toxicol Chem 26:24–36. doi:10.1897/06174R.1

    Article  CAS  Google Scholar 

  • Dominguez-Rosado E, Pitchel J (2004) Phytoremediation of soil contaminated with used motor oil: II. Greenhouse studies. Environ Eng Sci 21:169–180

    Article  CAS  Google Scholar 

  • Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torees E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. Inoculated with a microbial consortium in a model system. Chemosphere 59:405–413. doi:10.1016/j.chemosphere.2004.10.034

    Article  CAS  Google Scholar 

  • Ferrera-Cerrato R, Alarcon A, Mendoza-Lopez MR, Sangabriel W, Trejo-Aguilar D, Cruz-Sanchez JS, Lopez-Ortiz C, Delgadillo-Martinez J (2007) Phytoremediation of a fuel oil-polluted soil with Phaseolus coccineus using organic or inorganic fertilization. Agrociencia 41:817–826

    Google Scholar 

  • Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. https://clu-in.org/download/remed/phyassess.pdf Accessed 20 May 2016

  • Golubev SN, Schelud’ko AV, Muratova AY, Makarov OE, Turkovskaya OV (2009) Assessing the potential of rhizobacteria to survive under phenanthrene pollution. Water Air Soil Pollut 198:5–16. doi:10.1007/s11270-008-9821-x

    Article  CAS  Google Scholar 

  • GOST 26205-91 Determination of mobile compounds of phosphorus and potassium by Chiricov method modified by CINAO. Soils. http://gostexpert.ru/gost/getDoc/38501. (In Russian) Accessed 20 May 2016

  • GOST 26488-85 Determination of nitrates by СINАО method. Soils. http://gostexpert.ru/gost/getDoc/39049. (In Russian) Accessed 20 May 2016

  • GOST 26489-85 Determination of exchangeable ammonium by СINАО method. Soils. http://gostexpert.ru/gost/getDoc/39051. (In Russian) Accessed 20 May 2016

  • Hall J, Soole K, Bentham R (2011) Hydrocarbon phytoremediation in the family Fabaceae—a review. Int J Phytoremediat 13:317–332. doi:10.1080/15226514.2010.495143

    Article  CAS  Google Scholar 

  • Hutchinson SL, Banks MK, Schwab AP (2001) Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. J Environ Qual 30:395–403. doi:10.2134/jeq2001.302395x

    Article  CAS  Google Scholar 

  • Kaimi E, Mukaidani T, Tamaki M (2007) Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Prod Sci 10:211–218. doi:10.1626/pps.10.211

    Article  CAS  Google Scholar 

  • Kechavarzi C, Pettersson K, Leeds-Harrison P, Ritchie L, Ledin S (2007) Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ Poll 145:68–74. doi:10.1016/j.envpol.2006.03.039

    Article  CAS  Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Poll 133:455–465. doi:10.1016/j.envpol.2004.06.002

    Article  CAS  Google Scholar 

  • Kirkpatrick WD, White PM Jr, Wolf DC, Thoma GJ, Reynolds CM (2009) Selecting plants and nitrogen rates to vegetate crude-oil-contaminated soil. Int J Phytoremediat 8:285–297. doi:10.1080/15226510600992840

    Article  Google Scholar 

  • Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water-insoluble, soil hydrocarbons on agar plates. Appl Environ Microbiol 43:454–457

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  • Leonowicz A, Grzywnowicz K (1981) Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzym Microb Technol 3:55–58. doi:10.1016/0141-0229(81)90036-3

    Article  CAS  Google Scholar 

  • Liste HH, Felgentreu D (2006) Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl Soil Ecol 31:43–52. doi:10.1016/j.apsoil.2005.04.006

    Article  Google Scholar 

  • Lupashku MF (1988) Lucerna (Lucerne). Moscow, Agropromizdat (In Russian)

    Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165:195–209. doi:10.1007/s11270-005-4979-y

    Article  CAS  Google Scholar 

  • Muratova AY, Dmitrieva TV, Panchenko LV, Turkovskaya OV (2008) Phytoremediation of oil-sludge-contaminated soil. Int J Phytoremediat 10:486–502. doi:10.1080/15226510802114920

    Article  CAS  Google Scholar 

  • Muratova A, Lyubun Y, German K, Turkovskaya O (2015a) Effect of cadmium stress and inoculation with a heavy-metal-resistant bacterium on the growth and enzyme activity of Sorghum bicolor. Environ Sci Pollut Res 22:16098–16109. doi:10.1007/s11356-015-4798-7

    Article  CAS  Google Scholar 

  • Muratova A, Dubrovskaya E, Golubev S, Grinev V, Chernyshova M, Turkovskaya O (2015b) The coupling of the plant and microbial catabolisms of phenanthrene in the rhizosphere of Medicago sativa. J Plant Physiol 188:1–8. doi:10.1016/j.jplph.2015.07.014

    Article  CAS  Google Scholar 

  • Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997) Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut 95:165–178. doi:10.1007/BF02406163

    CAS  Google Scholar 

  • Nanekar S, Dhote M, Kashyap S, Singh SK, Juwarkar AA (2015) Microbe assisted phytoremediation of oil sludge and role of amendments: a mesocosm study. Int J Environ Sci Technol 12:193–202. doi:10.1007/s13762-013-0400-3

    Article  CAS  Google Scholar 

  • Pakharkova N.V., Prudnikova S.V., Gekk A.S., Larkova A.N., Korosteleva N.S. (2015) Optimization of plant choice for bioremediation of soils contaminated with oil and oil products in the South Siberia conditions. Bulletin of KrasGAU 8: 28–32. (In Russian, abstract in English).

  • Panchenko L, Turkovskaya O, Volkov M, Muratova A, Dubrovskaya Y, Pleshakova Y, Pozdnyakova N (2002) Large-scale in situ bioremediation of oil-slime. In: Hupka J (ed) Proceedings of 3rd International Conference Oil Pollution: Prevention, Characterization, Clean Technology. 8–11 September 2002, Gdansk, Poland, Volume 1.Gdansk, pp 9–16.

  • Peterson TA, Russelle MP (1991) Alfalfa and the nitrogen cycle in the Corn Belt. J Soil Water Conserv 46:229–235

    Google Scholar 

  • Phillips L, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833. doi:10.1016/j.soilbio.2006.04.038

    Article  CAS  Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2009) Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatment. Appl Soil Ecol 42:9–17. doi:10.1016/j.apsoil.2009.01.002

    Article  Google Scholar 

  • RD 39-00147105-006-97 Guidelines for the remediation of lands disturbed and contaminated during emergency repair and overhaul of petroleum trunk pipelines. http://meganorm.ru/Data2/1/4294846/4294846786.htm. Accessed 20 May 2016

  • Schwab P, Banks MK, Kyle WA (2006) Heritability of phytoremediation potential for the alfalfa cultivar Riley in petroleum contaminated soil. Water Air Soil Pollut 177:239–249. doi:10.1007/s11270-006-9161-7

    Article  CAS  Google Scholar 

  • Sengupta-Gopalan C, Bagga S, Potenza C, Ortega JL (2007) Alfalfa. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry, Transgenic Crops VI, vol 61. Springer-Verlag, Berlin Heidelberg, pp. 321–335

    Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian M, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090. doi:10.1016/j.chemosphere.2010.09.034

    Article  CAS  Google Scholar 

  • Sverdrup LE, Nielsen T, Krogh PH (2002) Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ Sci Technol 36:2429–2435. doi:10.1021/es010180s

    Article  CAS  Google Scholar 

  • Tang J, Wang R, Niu X, Zhou Q (2010) Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil Till Res 110:87–93. doi:10.1016/j.still.2010.06.010

    Article  Google Scholar 

  • Tang J, Lu X, Sun Q, Zhu W (2012) Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agric Ecosyst Environ 149:109–117. doi:10.1016/j.agee.2011.12.020

    Article  CAS  Google Scholar 

  • Wang J, Zhang Z, Su Y, He W, He F, Song H (2008) Phytoremediation of petroleum polluted soil. Petrol Sci 5:167–171. doi:10.1007/s12182-008-0026-0

    Article  CAS  Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226:262–278. doi:10.1007/s11270-015-2550-z

    Article  Google Scholar 

  • Zhang Z, Zhou Q, Peng S, Cai Z (2010) Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Sci Total Environ 408:5600–5605. doi:10.1016/j.scitotenv.2010.08.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Scientific Production Association “Ecosphere” Ltd. We thank our colleagues Drs. Ekaterina Dubrovskaya and Sergey Golubev (Laboratory of Environmental Biotechnology, IBPPM RAS) for their help in the analyses of the samples taken from the inspected area of the Saratov Petroleum Refinery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Panchenko.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchenko, L., Muratova, A. & Turkovskaya, O. Comparison of the phytoremediation potentials of Medicago falcata L. And Medicago sativa L. in aged oil-sludge-contaminated soil. Environ Sci Pollut Res 24, 3117–3130 (2017). https://doi.org/10.1007/s11356-016-8025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8025-y

Keywords

Navigation