Skip to main content
Log in

Characterization of the variation of carbonyl compounds concentrations before, during, and after the renovation of an apartment at Niterói, Brazil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present work reports the variation of 31 carbonyl compounds (CC) in an apartment located at Niterói City, Rio de Janeiro State, Brazil. Eight sampling campaigns were conducted through a 1-year period, and three areas (living room, kitchen, and bedroom) were evaluated before, during, and after the renovation activities and reoccupation of the apartment. Samples were collected using SEP-PAK cartridges impregnated with 2,4-dinitrophenylhydrazine, and the hydrazones were analyzed using rapid resolution liquid chromatography with UV detection. The lowest total concentration of CC (19.0 ± 1.5 μg m−3) was found before the renovation when the apartment was empty, but door varnishing resulted in highest contamination of the apartment (1386 ± 384 μg m−3); however, an important dispersion of CC was observed in the subsequent sampling (148 ± 1.8 μg m−3). After apartment reoccupation, the indoor contamination seemed to depend on the routine activities taken there, such as household product use and cooking activities, but apparently, local temperature increase favored the vaporization of the volatile CC from the building materials in the apartment. As far as we are concerned, this is the first study comparing the concentrations of 31 CC in residential areas before, during, and after renovation activities taken in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ABNT (2013) Brazilian National Standards Organization. NBR15575-4. Sistemas de vedações verticais internas e externas. http://360arquitetura.arq.br/wp-content/uploads/2016/01/NBR_15575-4_2013_Final. Sistemas-de-vedações-verticais-internas-e-externas.pdf. Accessed March 23, 2016

  • Aguado S, Polo AC, Bernal MP, Coronas J, Santamaría J (2004) Removal of pollutants from indoor air using zeolite membranes. J Membr Sci 240:159–166

    Article  CAS  Google Scholar 

  • Apollonio LG, Pianca DJ, Whittall IR, Maher WA, Kyd JM (2006) A demonstration of the use of ultra-performance liquid chromatography-mass spectrometry [UPLC/MS] in the determination of amphetamine-type substances and ketamine for forensic and toxicological analysis. J Chromatogr B Analyt Technol Biomed Life Sci 836:111–115

    Article  CAS  Google Scholar 

  • ASHRAE Standard 62.2. (2010) Ventilate Right - Ventilation Guide for New and Existing California Homes. https://resaveguide.lbl.gov/ashrae-standard-62-2. Accessed March 23, 2016

  • Baez A, Padilla H, Garcıa R, Torres MC, Rosas I, Belmont R (2003) Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico. Sci Total Environ 302:211–226

    Article  CAS  Google Scholar 

  • Bergh M (1999) Allergenic oxidation products. Acta DermatoVenereologia 79(suppl5):5–26

    Google Scholar 

  • Blondel A, Plaisance H (2011) Screening of formaldehyde indoor sources and quantification of their emission using a passive sampler. Build Environ 46:1284–1291

    Article  Google Scholar 

  • Cavalcante RM, Campelo CS, Barbosa MJ, Silveira ER, Carvalho TV, Nascimento RF (2006) Determination of carbonyl compounds in air and cancer risk assessment in an academic institute in Fortaleza, Brazil. Atmos Environ 40:5701–5711

    Article  CAS  Google Scholar 

  • Chen Y, Ho KF, Ho SSH, Ho WK, Lee SC, Yu JZ, Sit EHL (2007) Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong. J Environ Monit 9:1402–1409

    Article  CAS  Google Scholar 

  • Corrêa SM, Arbilla G, Martins EM, Quitério SL, Guiarães CS, Gatti LV (2010) Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area - Brazil. Atmos Environ 44:2302–2308

    Article  Google Scholar 

  • Dassonville C, Demattei C, Laurent AM, Le Moullec Y, Seta N, Momas I (2009) Assessment and predictor determination of indoor aldehyde levels in Paris newborn babies’ homes. Indoor Air 19:314–323

    Article  CAS  Google Scholar 

  • de Carvalho AB, Kato M, Rezende MM, Pereira PAP, de Andrade JB (2008) Determination of carbonyl compounds in the atmosphere of charcoal plants by HPLC and UV detection. J Sep Sci 31:1686–1693

    Article  Google Scholar 

  • Díaz L, Llorca-Pórcel J, Valor I (2008) Ultra trace determination of 31 pesticides in water samples by direct injection-rapid resolution liquid chromatography-electrospray tandem mass spectrometry. Anal Chim Acta 624:90–96

    Article  Google Scholar 

  • Du Z, Mo J, Zhang Y (2014) Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ Int 73:33–45

    Article  CAS  Google Scholar 

  • Eberlein-König B, Przybilla B, Kühnl P, Golling G, Gebefügi I, Ring J (2002) Multiple chemical sensitivity (MCS) and others: allergological, environmental and psychological investigations in individuals with indoor air related complaints. Int J Hyg Environ Health 205:213–220

    Article  Google Scholar 

  • Feron VJ, Til HP, Vrijer F, Woutersen RA, Cassee FR, van Bladeren PJ (1991) Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res 259:363–385

    Article  CAS  Google Scholar 

  • Finete VLM, Gouvêa MM, Marques FFC, Pereira Netto AD (2014) Characterization of newfound natural luminescent properties of melamine, and development and validation of a method of high performance liquid chromatography with fluorescence detection for its determination in kitchen plastic ware. Talanta 123:128–134

    Article  CAS  Google Scholar 

  • Fjällström P, Andersson B, Nilsson C (2003) Drying of linseed oil paints: the effects of substrate on the emission of aldehydes. Indoor Air 13:277–282

    Article  Google Scholar 

  • Freeman TL, Haver A, Duryee MJ, Tuma DJ, Klassen LW, Hamel FG, White RL, Rennard SI, Thiele GM (2005) Aldehydes in cigarette smoke react with the lipid peroxidation product malonaldehyde to form fluorescent protein adducts on lysines. Chem Res Toxicol 18:817–824

    Article  CAS  Google Scholar 

  • Gilbert NL, Guay M, Miller JD, Judek S, Chan CC, Dales RE (2005) Levels and determinants of formaldehyde, acetaldehyde, and acrolein in residential indoor air in Prince Edward Island, Canada. Environ Res 99:11–17

    Article  CAS  Google Scholar 

  • Gilbert AL, Guay M, Gauvin D, Dietz RN, Chan CC, Le´vesque B (2008) Air change rate and concentration of formaldehyde in residential indoor air. Atmos Environ 42:2424–2428

    Article  CAS  Google Scholar 

  • Grosjean E, Grosjean D (1995) Liquid chromatographic analysis of C1-C10 carbonyls. Int J Environ Anal Chem 61:47–64

    Article  CAS  Google Scholar 

  • Guieysse B, Hort C, Platel V, Munoz R, Ondarts M, Revah S (2008) Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol Adv 26:398–410

    Article  CAS  Google Scholar 

  • Gunschera J, Mentese S, Salthammer T, Andersen JR (2013) Impact of building materials on indoor formaldehyde levels: Effect of ceiling tiles, mineral fiber insulation and gypsum board. Build Environ 64:138–145

    Article  Google Scholar 

  • Guo M, Pei X, Mo F, Liu J, Shen X (2013) Formaldehyde concentration and its influencing factors in residential homes after decoration at Hangzhou, China. J Environ Sci 25:908–915

    Article  CAS  Google Scholar 

  • Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A (2004) Mortability from solid cancers among workers in formaldehyde industries. Am J Epidemiol 159:1117–1130

    Article  Google Scholar 

  • Heroux ME, Clark N, Van Ryswyk K, Mallick R, Gilbert NL, Harrison I, Rispler K, Wang D, Anastassopoulos A, Guay M, MacNeill M, Wheeler AJ (2010) Predictors of indoor air concentrations in smoking and non-smoking residences. Int J Environ Res Public Health 7:3080–3099

    Article  CAS  Google Scholar 

  • Huang Y, Ho SSH, Ho KF, Lee SC, Yu JZ, Louie PKK (2011) Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J Hazard Mater 186:344–351

    Article  CAS  Google Scholar 

  • Hun DE, Corsi RL, Morandi MT, Siegel JA (2010) Formaldehyde in residences: long-term indoor concentrations and influencing factors. Indoor Air 20:196–203

    Article  CAS  Google Scholar 

  • IARC (1999) - Re-Evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans 71, Lyon, France.

  • IARC (2006) - Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans 88, Lyon, France.

  • IBGE (2010) Instituto Brasileiro de Geografia e Estatística http://censo2010.ibge.gov.br. Accessed 24 April 2015.

  • Katragadda HR, Fullana A, Sidhu S, Carbonell-Barrachina AA (2010) Emission of volatile aldehydes from heated cooking oils. Food Chem 120:59–65

    Article  CAS  Google Scholar 

  • Kim S (2009) Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission. Bioresour Technol 100:744–748

    Article  CAS  Google Scholar 

  • Kim S, Kim HJ (2005) Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins. Bioresour Technol 96:1457–1464

    Article  CAS  Google Scholar 

  • Liu W, Zhang JJ, Korn LR, Zhang L, Weisel CP, Turpinb B, Morandi M, Stock T, Colome S (2007) Predicting personal exposure to airborne carbonyls using residential measurements and time/activity data. Atmos Environ 41:5280–5288

    Article  CAS  Google Scholar 

  • Liu Q, Liu Y, Zhang M (2013) Personal exposure and source characteristics of carbonyl compounds and BTEXs within homes in Beijing, China. Build Environ 61:210–216

    Article  Google Scholar 

  • Marchand C, Bulliot B, Calvé SL, Mirabel P (2006) Aldehyde measurements in indoor environments in Strasbourg (France). Atmos Environ 40:1336–1345

    Article  CAS  Google Scholar 

  • Marchand C, Calve SL, Mirabel P, Glasser N, Casset A, Schneider N, de Blay F (2008) Concentrations and determinants of gaseous aldehydes in 162 homes in Strasbourg (France). Atmos Environ 42:505–516

    Article  CAS  Google Scholar 

  • Mazzeo JR, Neue UD, Kele M, Plumb RS (2005) A new separation technique takes advantage of sub-2-mu m porous particles. Anal Chem 77:460–467

    Article  Google Scholar 

  • Missia DA, Demetriou E, Michael N, Tolis EI, Bartzis JG (2010) Indoor exposure from building materials: a field study. Atmos Environ 44:4388–4395

    Article  CAS  Google Scholar 

  • Mugica V, Vega E, Chow J, Reyes E, Sanchez G, Arriaga J, Watson R (2001) Speciated non-methane organic compounds emissions from food cooking in Mexico. Atmos Environ 35:1729–1734

    Article  CAS  Google Scholar 

  • Nguyen HT, Takenara N, Bandow H, Maeda Y, de Oliva ST, Boetelho MF, Tavares TM (2001) Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmos Environ 35:3075–3083

    Article  CAS  Google Scholar 

  • Nicolas M, Ramalho O, Maupetit F (2007) Reactions between ozone and building products: impact on primary and secondary emissions. Atmos Environ 41:3129–3138

    Article  CAS  Google Scholar 

  • NIOSH - Pocket guide to chemical hazards. National Institute for Occupational Safety and Health. http://www.cdc.gov/niosh/npg/npgd0293.html. Accessed Jun 23, 2015

  • Ochs SM, Fasciotti M, Barreto RP, Figueiredo NG, Albuquerque FC, Massa MCGP, Gabardo I, Pereira Netto AD (2010) Optimization and comparison of HPLC and RRLC conditions for the analysis of carbonyl-DNPH derivatives. Talanta 81:521–529

    Article  CAS  Google Scholar 

  • Ochs SM, Albuquerque FC, Massa MCGP, Pereira Netto AD (2011) Evaluation of C1-C13 carbonyl compounds by RRLC-UV in the atmosphere of Niterói City, Brazil. Atmos Environ 45:5183–5190

    Article  CAS  Google Scholar 

  • Ochs SM, Grotz LO, Factorine LS, Rodrigues MR, Pereira Netto AD (2012) Occupational exposure to formaldehyde in an institute of morphology in Brazil: a comparison of area and personal sampling. Environ Sci Pollut Res 19:2813–2819

    Article  CAS  Google Scholar 

  • Ochs SM, Furtado LA, Pereira Netto AD (2015) Evaluation of the concentrations and distribution of carbonyl compounds in selected areas of a Brazilian bus terminal. Environ Sci Pollut Res 22:9413–9423

    Article  CAS  Google Scholar 

  • Osório VM, Cardeal ZL (2011) Determination of acrolein in french fries by solid-phase microextration gas chromatography and mass spectrometry. J Chromatogr A 1218:3332–3336

    Article  Google Scholar 

  • Otto M (1999) Chemometrics: statistics and computer application in analytical chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Pal R, Kim KH (2007) Experimental choices for the determination of carbonyl compounds in air. J Sep Sci 30:2708–2718

    Article  CAS  Google Scholar 

  • Pal R, Kim KH, Hong J, Jeon EC (2008) The pollution status of atmospheric carbonyls in a highly industrialized area. J Hazard Mater 153:1122–1135

    Article  CAS  Google Scholar 

  • Pang X, Lewis A (2011) Carbonyl compounds in gas and particle phases of mainstream cigarette smoke. Sci Total Environ 409:5000–5009

    Article  CAS  Google Scholar 

  • Park JS, Ikeda K (2006) Variations of formaldehyde and VOCs levels during 3 years in new and older homes. Indoor Air 16:129–135

    Article  CAS  Google Scholar 

  • Pereira EA, Rezende MOO, Tavares MFM (2004) Analysis of low molecular weight aldehydes in air samples by capillary electrophoresis after derivatization with 4-hydrazinobenzoic acid. J Sep Sci 27:28–32

    Article  CAS  Google Scholar 

  • PNUD (2003)- Programa das Nações Unidas para o Desenvolvimento. Ranking do IDH dos Municípios do Brasil http://www.pnud.org.br/atlas/ranking/IDH_Municipios_Brasil_2000.aspx?indiceAccordion=1&li=li_Ranking2003. Accessed 24 April 2015.

  • Redlich CA, Sparer J, Cullen MR (1997) Sich-building syndrome. Lancet 349:1013–1016

    Article  CAS  Google Scholar 

  • Salthammer T, Fuhrmann F, Kaufhold S, Meyer B, Schwarz A (1995) Effects of climatic parameters on formaldehyde concentrations in indoor air. Indoor Air 5:120–128

    Article  CAS  Google Scholar 

  • Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572

    Article  CAS  Google Scholar 

  • Shinohara N, Mizukoshi A, Yanagisawa Y (2004) Identification of responsible volatile chemicals that induce hypersensitive reaction to multiple chemical sensitivity patients. J Expo Anal Environ Epidemiol 14:84–91

    Article  CAS  Google Scholar 

  • U.S. EPA (1999) Compendium Method TO-11A. Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC). Office of Research and Development, Research Triangle Park

    Google Scholar 

  • Uchiyama S, Tomizawa T, Tokoro A, Aoki M, Hishiki M, Yamada T, Tanaka R, Sakamoto H, Yoshida T, Bekki K, Inaba Y, Nakagome H, Kunugita N (2015) Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer. Environ Res 137:364–372

    Article  CAS  Google Scholar 

  • Veremchuk LV, Yankova VI, Vitkina TI, Nazarenko AV, Golokhvast KS (2016) Urban air pollution, climate and its impact on asthma morbidity. Asian Pac J Trop Biomed 6(1):76–79

    Article  Google Scholar 

  • Wang B, Lee SC, Ho KF (2007) Characteristics of carbonyls: concentration and source strengths for indoor and outdoor residential microenvironments in China. Atmospheric Environ 41:2851–2861

    Article  CAS  Google Scholar 

  • Weng M, Zhu L, Yang K, Chen S (2010) Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China. Environ Monit Assess 163:573–581

    Article  CAS  Google Scholar 

  • Wieslander G, Norback D, Bjornsson E, Janson C, Boman G (1997) Asthma and the indoor environment: the significance of emission of formaldehyde and volatile organic compounds from newly painted indoor surfaces. Int Arch Occup Environ Health 69:115–124

    Article  CAS  Google Scholar 

  • Xiong J, Zhang YP (2010) Impact of temperature on the initial emittable concentration of formaldehyde in building materials: experimental observation. Indoor Air 20:523–529

    Article  CAS  Google Scholar 

  • Xu RNX, Fan L, Rieser MJ, El-Shourbagy TA (2007) Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS. J Pharm Biomed Anal 44:342–355

    Article  CAS  Google Scholar 

  • Yamashita S, Kume K, Horiike T, Honma N, Fusaya M, Ohura T, Amagai T (2010) A simple method for screening emission sources of carbonyl compounds in indoor air. J Hazard Mater 178:370–376

    Article  CAS  Google Scholar 

  • Yingshu Y, Nei L, Lijun Z (2015) Relationship between the concentration of formaldehyde in the air and asthma in children: a meta-analysis. Int J Clin Exp 8:8358–8362

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), CAPES, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ—Project E-26/111-366/2012) for financial support and grants. LAF thanks CNPq-PIBIC for an undergraduate grant. ADPN thanks CNPq for an individual fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annibal Duarte Pereira Netto.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochs, S.d.M., Furtado, L.d.A., Cerqueira, W.V. et al. Characterization of the variation of carbonyl compounds concentrations before, during, and after the renovation of an apartment at Niterói, Brazil. Environ Sci Pollut Res 23, 15605–15615 (2016). https://doi.org/10.1007/s11356-016-6657-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6657-6

Keywords

Navigation