Skip to main content
Log in

Biomarkers of oxidative stress and metal accumulation in marsh frog (Pelophylax ridibundus)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To understand the effect of metals on the marsh frog Pelophylax ridibundus and the possible environment-induced changes in oxidative stress enzymes, we determined the concentrations of 18 metals: Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, In, Li, Mn, Ni, Pb, Sr, and Zn, in the tissues (liver, skin, and muscle) and water samples collected from different locations in Serbia. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione S-transferase (GST), acetylcholinesterase (AChE), and changes in concentrations of reduced glutathione (GSH) and sulfhydryl groups (SH) were analyzed in the tissues of the sampled frogs. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Ga, Hg, and Ni were highest in the liver, whereas those of Ba, Ca, Li, Mn, Pb, Sr, and Zn were highest in the skin. Hg correlated positively with liver SOD (in frogs from Danube-Tisza-Danube Canal (DTD)), muscle CAT (DTD), and muscle GST Ponjavica River (PO); Pb demonstrated a strong positive correlation with liver GR in frogs from Mt. Fruška Gora (FG); Cd only exhibited a positive correlation with AChE in the skin of frogs from DTD. In the skin, Zn correlated positively with AChE (DTD), SH groups (PO), and CAT (FG), and negatively with CAT, GST, and SH in the liver of frogs from DTD. Examination of these oxidative stress biomarkers, together with analysis of metal accumulation in the liver and skin of marsh frogs, provides a powerful tool for the assessment of metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SOD:

Superoxide dismutase

CAT:

Catalase

GSH-Px:

Glutathione peroxidase

GR:

Glutathione reductase

GST:

Glutathione S-transferase

GSH:

Glutathione

SH:

Sulfhydryl groups

AChE:

Acetylcholinesterase

DTD:

Danube-Tisza-Danube Canal

PO:

River Ponjavica

FG:

Fruška Gora Mountain

NADPH:

Nicotinamide adenine dinucleotide phosphate

GSSG:

Oxidized glutathione

CDNB:

1-Chloro-2,4-dinitrobenzene

DTNB:

5,5′-Dithiobis-(2-nitrobenzoic acid)

ICP-OES:

Inductively coupled plasma atomic emission spectrometry

References

  • Aliko V, Hajdaraj G, Caci A, Faggio C (2015) Copper induced lysosomal membrane destabilisation in haemolymph cells of Mediterranean green crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Braz Arch Biol Technol 58:750–756

    Article  Google Scholar 

  • Bartoskova M, Dobsikova R, Stancova V, Zivna D, Blahova J, Marsalek P, Zelníckova L, Bartos M, Di Tocco FC, Faggio C (2013) Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuroendocrinol Lett 34:102–108

    CAS  Google Scholar 

  • Birungi Z, Masola B, Zaranyika MF, Naigaga I, Marshall B (2007) Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Phys Chem Earth 32:1350–1358

    Article  Google Scholar 

  • Borković-Mitić S, Pavlović S, Perendija B, Despotović S, Gavrić J, Gačić Z, Saičić Z (2013) Influence of some metal concentrations on the activity of antioxidant enzymes and concentrations of vitamin E and SH-groups in the digestive gland and gills of the freshwater bivalve Unio tumidus from the Serbian part of Sava River. Ecol Ind 32:212–221

    Article  Google Scholar 

  • Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346:171–179

    Article  CAS  Google Scholar 

  • Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, Rinaudo C, Berta G, Biondi S, Lingua G (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ Pollut 157:2108–2117

    Article  CAS  Google Scholar 

  • Claiborne A (1984) Catalase activity. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Inc, Boca Raton, pp 283–284

    Google Scholar 

  • Cossu C, Doyotte A, Babut M, Exinger A, Vasseur P (2000) Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicol Environ Saf 45:106–121

    Article  CAS  Google Scholar 

  • Eaton DL, Stacey NH, Wong KL, Klaassen CD (1980) Dose–response effects of various metal ions on rat liver, metallothionein, glutathione, heme oxygenase and cytochrome P–450. Toxicol Appl Pharmacol 55:393–402

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) Determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Falfushinska HI, Romanchuk LD, Stolyar OB (2008) Different responses of biochemical markers in frogs (Rana ridibunda) from urban and rural wetlands to the effect of carbamate fungicide. Comp Biochem Physiol C 148:223–229

    Google Scholar 

  • Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. Int J Environ Res Public Health 4:158–165

    Article  CAS  Google Scholar 

  • Fazio F, Marafioti S, Torre A, Sanfilippo M, Panzera M, Faggio C (2013) Haematological and serum protein profiles of Mugil cephalus: effect of two different habitats. Ichthyol Res 60:36–42

    Article  Google Scholar 

  • Fazio F, Piccione G, Tribulato K, Ferrantelli V, Giangrosso G, Arfuso F, Faggio C (2014) Bioaccumulation of heavy metals in blood and tissue of striped mullet in two Italian lakes. J Aquat Anim Health 26:278–284

    Article  CAS  Google Scholar 

  • Glatzle D, Vuilleumier JP, Weber F, Decker K (1974) Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia 30:665–667

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  • Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med 29:927–945

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hermes-Lima M (2004) Oxygen in biology and biochemistry: role of free radicals. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Wiley, New York, pp 319–368

    Google Scholar 

  • ICPDR (2006) Water quality in the Danube River Basin. TNMN Yearbook, Vienna

    Google Scholar 

  • Jaishankar M, Tseten T, Abalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  Google Scholar 

  • Ji X, Hu W, Cheng J, Yuan T, Xu F, Qu L,Wang W (2006) Oxidative stress on domestic ducks (Shaoxing duck) chronically exposed in a mercury–selenium coexisting mining area in China. Ecotoxicol Environ Saf 64:171–177

  • Labieniec M, Gabryelak T (2007) Antioxidative and oxidative changes in digestive gland cells of freshwater mussels Unio tumidus caused by selected phenolic compounds in the presence of H2O2 or Cu2+ ions. Toxicol in Vitro 21:146–156

    Article  CAS  Google Scholar 

  • Lance V, Cort T, Masuoka J, Lawson R, Saltman P (1995) Unusually high zinc concentrations in snake plasma, with observations on plasma zinc concentrations in lizards, turtles and alligators. J Zool 235:577–585

    Article  Google Scholar 

  • Lionetto MG, Caricato R, Giordano M, Schettino T (2003) Acetylcholinesterase as biomarker in environmental biomonitoring. In: Parveen M, Kumar S (eds) Recent trends in the acetylcholinesterase system. Ios Press, Amsterdam, pp 91–102

    Google Scholar 

  • Loumbourdis N, Wray D (1998) Heavy-metal concentration in the frog Rana ridibunda from a small river of Macedonia. Northern Greece. Environ Int 24:427–431

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Messina CM, Faggio C, Laudicella AV, Sanfilippo M, Trischitta F, Santulli A (2014) Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus galloprovincialis): regulatory volume decrease (RVD) and modulation of biochemical markers related to oxidative stress. Aquat Toxicol 157:94–100

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Google Scholar 

  • NIVA (Norwegian Institute for Water Research) (2006) Revitalization of the DTD Grand Canal through Vrbas—final report

    Google Scholar 

  • Orbea A, Ortiz-Zarragoitia M, Solé M, Porte C, Cajaraville M (2002) Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquat Toxicol 58:75–98

    Article  CAS  Google Scholar 

  • Pereira P, de Pablo H, Rosa-Santos F, Pacheco M, Vale C (2009) Metal accumulation and oxidative stress in Ulva sp. substantiated by response integration into a general stress index. Aquat Toxicol 91:336–345

    Article  CAS  Google Scholar 

  • Prokić M, Borković-Mitić S, Krizmanić I, Gavrić J, Despotović S, Gavrilović B, Radovanović T, Pavlović S, Saičić Z (2015) Comparative study of oxidative stress parameters and acetylcholinesterase activity in the liver of Pelophylax esculentus complex frogs. Saudi J Biol Sci. doi:10.1016/j.sjbs.2015.09.003

    Google Scholar 

  • Rana SV (2008) Metals and apoptosis: recent developments. J Trace Elem Med Bio 22:262–284

    Article  CAS  Google Scholar 

  • Regoli F, Gorbi S, Fattorini D, Tedesco S, Notti A, Machella N, Bocchetti R, Benedetti M, Piva F (2006) Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environ Health Perspect 114:63–69

    Article  CAS  Google Scholar 

  • Rossi MA, Cecchini G, Dianzani MM (1983) Glutathione peroxidase, glutathione reductase and glutathione transferase in two different hepatomas and in normal liver. IRCS Med Sci Biochem 11:805

    CAS  Google Scholar 

  • Sandhir R, Gill KD (1995) Effect of lead on lipid peroxidation in liver of rats. Biol Trace Elem Res 48:91–97

    Article  CAS  Google Scholar 

  • Stolyar OB, Loumbourdis NN, Falfushinska HI, Romanchuk LD (2008) Comparison of metal bioavailability in frogs from urban and rural sites of western Ukraine. Arch Environ Contam Toxicol 54:107–113

    Article  CAS  Google Scholar 

  • Taiwo IE, Amaeze NH, Imbufe AP, Adetoro OO (2014) Heavy metal bioaccumulation and biomarkers of oxidative stress in the wild African tiger frog, Hoplobatrachus occipitalis. Afr J Environ Sci Technol 8:6–15

    Article  Google Scholar 

  • Takada Y, Noguchit T, Kayiyama M (1982) Superoxide dismutase in various tissues from rabbits bearing the Vx-2 carcinoma in the maxillary sinus. Cancer Res 42:4233–4235

    CAS  Google Scholar 

  • Tamura M, Oshino N, Chance B (1982) Some characteristics of hydrogen- and alkylhydroperoxides metabolizing systems in cardiac tissue. J Biochem 92:1019–1031

    CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2008) Morphology and physiology of zinc-stressed mulberry plants. J Plant Nutr Soil Sci 171:286–294

    Article  CAS  Google Scholar 

  • Torre A, Trischitta F, Faggio C (2013) Effect of CdCl2 on regulatory volume decrease (RVD) in Mytilus galloprovincialis digestive cells. Toxicol in Vitro 27:1260–1266

    Article  CAS  Google Scholar 

  • Torres MA, Testa CP, Gaspari C, Masutti MB, Panitz CMN, Curi-Pedrosa R, Almeida EA, Di Mascio P, Wilhelm Filho D (2002) Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Mar Pollut Bull 44:923–932

    Article  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  CAS  Google Scholar 

  • Vogiatzis A, Loumbourdis NS (1998) Cadmium accumulation in liver and kidneys and hepatic metallothionein and glutathione levels in Rana ridibunda, after exposure to CdCl2. Arch Environ Contam Toxicol 34:64–68

    Article  CAS  Google Scholar 

  • Vogiatzis A, Loumbourdis NS (1999) Exposure of Rana ridibunda to lead. 1-Lead accumulation in different tissues and hepatic δ aminolevulinic acid dehydratase activity. J Appl Toxicol 19:25–29

    Article  CAS  Google Scholar 

  • Wenning RJ, Di Giulio RT, Gallagher EP (1988) Oxidant-mediated biochemical effects of paraquat in the ribbed mussel, Geukensia demissa. Aquat Toxicol 12:157–170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 173041. The authors are grateful to Dr. Goran Poznanović for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavica S. Borković-Mitić.

Ethics declarations

Animal capture was approved by the Serbian Ministry for Energy, Development and Environmental Protection (Permissions No. 353-01-446/2013-08). All animal procedures complied with the European Directive (2010/63/EU) on the protection of animals used for experimental and other scientific purposes.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Thomas Hutchinson

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borković-Mitić, S.S., Prokić, M.D., Krizmanić, I.I. et al. Biomarkers of oxidative stress and metal accumulation in marsh frog (Pelophylax ridibundus). Environ Sci Pollut Res 23, 9649–9659 (2016). https://doi.org/10.1007/s11356-016-6194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6194-3

Keywords

Navigation