Skip to main content
Log in

Spatial and temporal trends of ozone distribution in the Jizerské hory Mountains of the Czech Republic

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We present results of the 5-year monitoring of ambient O3 concentrations in a Central European medium altitude mountain forested area. O3 levels were measured at 11 sites between 714 and 1000 m a.s.l. in 2006–2010 vegetation seasons using Ogawa diffusive samplers. Our results reveal that O3 exposure in the Jizerské hory Mts. was relatively high and comparable with polluted sites in Southern Europe and in higher altitudes. O3 concentrations differed significantly between individual sites and in individual years. O3 concentrations showed clear dependence on altitude at sites with similar aspect. Its gradient for the entire 5-year period under review equaled 3.5 ppb/100 m of altitude, ranging between nearly 5 ppb/100 m of altitude in 2006 and nearly 3 ppb/100 m of altitude in 2010. O3 concentrations at the site with northern aspect were consistently significantly lower than at the site at similar altitude with southern aspect. O3 concentrations measured at the forest edge were consistently lower than those measured at the same site but at the forest clearing. It is evident that the macro-setting of the O3 monitoring site is crucial for obtaining reliable results with high representativeness for the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal SB, Agrawal M (eds) (1999) Environmental Pollution and Plant Responses. CRC Press, Boca Raton

    Google Scholar 

  • Aneja V, Li Z, Das M (1994) Ozone case studies at high elevation in the eastern United States. Chemosphere 29:1711–1733

    Article  CAS  Google Scholar 

  • Atil H, Unver Y (2001) Multiple comparisons. Online J Biol Sci 1:723–727

    Article  Google Scholar 

  • Brace S, Peterson DI (1998) Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade mountains, U.S.A. Atmos Environ 32:3629–3637

    Article  CAS  Google Scholar 

  • Brasseur GP, Prinn RG, Pszenny AAP (2003) Atmospheric Chemistry in a Changing World. The IGBP Series. Springer, Berlin

    Book  Google Scholar 

  • Brodin M, Helmig D, Oltmans S (2010) Seasonal ozone behavior along an elevation gradient in the Colorado Front Range Mountains. Atmos Environ 44:5305–5315

    Article  CAS  Google Scholar 

  • Bryan AM, Steiner AL (2013) Canopy controls on the forest-atmosphere exchange of biogenic ozone and aerosol precursors. Mich J Sustain 1:31–49

    Google Scholar 

  • Bytnerowicz A, Godzik B, Grodzińska K, Fraczek W, Musselman R, Manning W, Badea O, Popescu F, Fleischer P (2004) Ambient ozone in forests in Central and Eastern European mountains. Environ Pollut 130:5–16

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Arbaugh M, Schilling S, Fraczek W, Alexander D, Dawson P (2007) Air pollution distribution patterns in the san Bernardino mountains of Southern California: a 40-Year Perspective. Sci World J 7:98–109

    Article  CAS  Google Scholar 

  • Chevalier A, Gheusi F, Delmas R, Ordónez C, Sarrat C, Zbinden R, Thouret V, Athier G, Cousin J-M (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for Western Europe over the period 2001–2004. Atmos Chem Phys 7:4311–4326

    Article  CAS  Google Scholar 

  • Cooper SM, Peterson DL (2000) Spatial distribution of tropospheric ozone in western Washington, USA. Environ Pollut 107:339–347

    Article  CAS  Google Scholar 

  • De Leeuw FAM, De Paus TA (2001) Exceedance of EC ozone threshold values in Europe in 1997. Water Air Soil Poll 128:255–281

    Article  Google Scholar 

  • De Vries W, Dobbertin MH, Sollberg S, Van Dobben HF, Schaub M (2014) Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview. Plant Soil 380:1–45

    Article  CAS  Google Scholar 

  • Derwent RG, Steveson DS, Collins WJ, Johnson CE (2004) Intercontinental transport and the origins of the ozone observed at surface sites in Europe. Atmos Environ 38:1891–1901

    Article  CAS  Google Scholar 

  • Díaz-de-Quijano M, Peñuelas J, Ribas A (2009) Increasing interannual and altitudinal ozone mixing ratios in the Catalan Pyrenees. Atmos Environ 43:6049–6057

    Article  CAS  Google Scholar 

  • EC (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, OJEC L 152

  • EEA (2010) Air quality in Europe—2011 report. EEA, Copenhagen

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academic Press, San Diego

    Google Scholar 

  • Fuller WA (1987) Measurement Error Models. John Wiley, New York

    Book  Google Scholar 

  • Gerosa G, Mazzali C, Ballarin-Denti A (2001) Techniques of ozone monitoring in a mountain forest region: passive and continuous sampling, vertical and canopy profiles. Sci World 1:612–626

    Article  Google Scholar 

  • Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Pollut 147:467–488

    Article  CAS  Google Scholar 

  • Hoek G, Beelen R, de Hoogh K et al (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42:7561–7578

    Article  CAS  Google Scholar 

  • Horálek J, de Smet P, Kurfurst P, de Leeuw F, Benešová N (2015) European air quality maps of PM and ozone for 2012 and their uncertainty. ETC./ACM Technical Paper 2014/4, http://acm.eionet.europa.eu/reports/ETCACM_TP_2014_4_spatAQmaps_2012. Accessed 6 January 2015

  • Hůnová I (2001) Spatial interpretation of ambient air quality for the territory of the Czech Republic. Environ Pollut 112:107–119

    Article  Google Scholar 

  • Hůnová I (2003) Ambient air quality for the territory of the Czech Republic in 1996–1999 expressed by three essential factors. Sci Total Environ 303:245–251

    Article  CAS  Google Scholar 

  • Hůnová I, Schreiberová M (2012) Ambient ozone phytotoxic potential over the Czech forests as assessed by AOT40. iForest—biogeosciences and. Forestry 5:153–162

    Google Scholar 

  • Hůnová I, Livorová H, Ostatnická J (2003) Potential ambient ozone impact on ecosystems in the Czech Republic as indicated by exposure index AOT40. Ecol Indic 3:35–47

    Article  CAS  Google Scholar 

  • Hůnová I, Matoušková L, Srněnský R, Koželková K (2011) Ozone influence on native vegetation in the Jizerské hory Mts. of the Czech Republic: results based on ozone exposure and ozone-induced visible symptoms. Environ Monit Assess 183:501–515

    Article  CAS  Google Scholar 

  • Hůnová I, Horálek J, Schreiberová M, Zapletal M (2012) Ambient ozone exposure in Czech forests: a GIS-based approach to spatial distribution assessment. Sci World J. doi:10.1100/2012/123760

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An Introduction to Applied Geostatistics. Oxford University Press, Oxford

    Google Scholar 

  • Isaksen ISA ed. (2003) Ozone-climate interactions. Air pollution research report No. 81. EC, Brussels

  • Johnston K, Ver Hoef J, Krivoruchko K, Lucas N (2001) Using ArcGIS Geostatistical Analyst. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Jonson JE, Simpson D, Fagerli H, Solberg S (2006) Can we explain the trends in European ozone levels? Atmos Chem Phys 6:51–66

    Article  CAS  Google Scholar 

  • Karlsson PE, Hansson M, Hoglund H-O, Pleijel H (2006) Ozone concentration gradients and wind conditions in Norway spruce (Picea abies) forests in Sweden. Atmos Environ 40:1610–1618

    Article  CAS  Google Scholar 

  • Koutrakis P, Wolfson JM, Bunyarovich A, Froelich SE, Koichiro H, Mulik JD (1993) Measurement of ambient ozone using a nitrate-coated filter. Anal Chem 65:209–214

    Article  CAS  Google Scholar 

  • Krupa SV, Legge AH (2000) Passive sampling of ambient, gaseous air pollutants: an assessment from an ecological perspective. Environ Pollut 107:31–45

    Article  CAS  Google Scholar 

  • Krzyzanowski J (2004) Ozone variation with height in a forest canopy—results from a passive sampling field campaign. Atmos Environ 38:5957–5962

    Article  CAS  Google Scholar 

  • Krzyzanowski J, McKendry IG, Innes JL (2006) Evidence of elevated ozone concentrations on forested slopes of the lower Fraser Valley, British Columbia, Canada. Water Air Soil Poll 173:273–287

    Article  CAS  Google Scholar 

  • Launiainen S, Katul GG, Grönholm T, Vesala T (2013) Partitioning ozone fluxes between canopy and forest floor by measurements and a multi-layer model. Agr Forest Meteorol 173:85–99

    Article  Google Scholar 

  • Matoušková L, Novotný R, Hůnová I, Buriánek V (2010) Visible foliar injury as a tool for the assessment of surface ozone impact on native vegetation: a case study from the Jizerské hory Mts. J For Sci 56:177–182

    Google Scholar 

  • Matyssek R, Bytnerowicz A, Karlsson P-E, Paoletti E, Sanz M, Schaub M, Wieser G (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146:587–607

    Article  CAS  Google Scholar 

  • Mikkelsen TN, Ro-Poulsen H, Pileggard K, Hovmand MF, Jensen NO, Christensen CS, Hummelshoej P (2000) Ozone uptake by an evergreen forest canopy: temporal variation and possible mechanisms. Environ Pollut 109:423–429

    Article  CAS  Google Scholar 

  • Moore GWK, Semple JL (2009) High concentration of surface ozone observed along the Khumbu Valley, Nepal, April 2007. Geophysl Res Lett 36(L):14809

    Article  CAS  Google Scholar 

  • Niinemets U, Monson RK (2013) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, Vol. 5. Springer, Dordrecht

    Book  Google Scholar 

  • NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/. Accessed 6 June 2013

  • Ostatnická J, Vlasáková L (2014) Air Pollution in the Czech Republic in 2013. CHMI, Prague

    Google Scholar 

  • Paoletti E, Schaub M, Matyssek R, Wieser G, Augustaitis A, Bastrup-Birk AM, Bytnerowicz A, Gunthardt Goerg MS, Muller-Starck G, Serengil Y (2010) Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environ Pollut 158:1986–1989

    Article  CAS  Google Scholar 

  • Pleijel H, Wallin G, Karlsson PE, Skärby L (1996) Ozone gradients in a spruce forest stand in relation to wind speed and time of the day. Atmos Environ 30:4077–4084

    Article  CAS  Google Scholar 

  • Puxbaum H, Gabler K, Smidt S, Glattes P (1991) A one-year record of ozone profiles in an alpine valley (Zillertal/Tyrol, Austria, 600–2000 m a.s.l.). Atmos Environ 25(A):1756–1759

    Google Scholar 

  • Ray JD (2001) Spatial distribution of tropospheric ozone in national parks of California: interpretation of passive-sampler data. Sci World J 1:483–497

    Article  CAS  Google Scholar 

  • Ribas A, Peñuelas J (2006) Surface ozone mixing ratio increase with altitude in a transect in the Catalan Pyrenees. Atmos Environ 40:7308–7315

    Article  CAS  Google Scholar 

  • Rinne J, Tuovinen J-P, Laurila T, Hakola H, Aurela M, Hypén H (2000) Measurements of hydrocarbon fluxes by a gradient method above a northern boreal forest. Agr Forest Meteorol 102:25–37

    Article  Google Scholar 

  • Roschina VV, Roschina VD (2003) Ozone and Plant Cell. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science Policy Report 15/08. The Royal Society, London

    Google Scholar 

  • Sanz MJ, Calatayud V, Sánchez-Peña G (2007) Measures of ozone concentrations using passive sampling in forests of South Western Europe. Environ Pollut 145:620–628

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics. From air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sicard P, Dalstein-Richier L, Vas N (2011) Annual and seasonal trends of ambient ozone concentrations and its impact on forest vegetation in Mercantour National Park (South-eastern France) over the 2000–2008 period. Environ Pollut 159:351–362

    Article  CAS  Google Scholar 

  • Simpson D, Arneth A, Mills G, Solberg S, Uddling J (2014) Ozone—the persistent menace: interactions with the N cycle and climate change. Curr Opin Environ Sustain 9–10:9–19

    Article  Google Scholar 

  • Thiele V, Prinz B, Schwela D (1990) Mess- und Experimentierstation im Forst (MEXFO). Abschlussbericht uber das Projekt VIPF 3/129, APF/II.6, gefordert mit Mitteln der europa ischen Gemeinschaft, durchgefuhrt von der LIS NRW, Essen

  • Tuovinen J-P, Emberson L, Simpson D (2009) Modelling ozone fluxes to forests for risk assessment: status and prospects. Ann For Sci 66:401

    Article  CAS  Google Scholar 

  • U.S. EPA (1998) Guideline on ozone monitoring site selection. EPA-454/R-98-002. Research Triangle Park

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    Article  CAS  Google Scholar 

  • Vlasáková-Matoušková L, Hůnová I (2015) Stomatal ozone flux and visible leaf injury in native juvenile trees of Fagus Sylvatica L.: a field study from the Jizerské hory Mts., Czech Republic. Environ Sci Poll Res 22:10034–10046

    Article  CAS  Google Scholar 

  • WHO (2000) Air Quality Guidelines, 2nd edn. WHO regional Office for Europe, Copenhagen

    Google Scholar 

  • Yuska DE, Skelly JM, Ferdinand JA, Stevenson RE, Sabate JE, Mulik JD, Hines A (2003) Use of bioindicators and passive sampling device to evaluate ambient ozone concentrations in north central Pennsylvania. Environ Pollut 125:71–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly funded by the Ministry of Environment of the Czech Republic (project SP/1b7/189/07). The authors thank Jana Ostatnická for preparing the figures and Sharon King for proofreading the paper. We highly appreciate the comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iva Hůnová.

Additional information

Responsible editor: Gerhard Lammel

Highlights

• We measured O3 in a Central European medium altitude forested area in 2006–2010.

• O3 concentrations were high, comparable with polluted sites in Southern Europe.

• O3 concentrations differed significantly between individual sites.

• O3 concentrations differed significantly between individual years.

• Altitude, aspect, and proximity to forest were the factors driving the O3 levels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hůnová, I., Stoklasová, P., Schovánková, J. et al. Spatial and temporal trends of ozone distribution in the Jizerské hory Mountains of the Czech Republic. Environ Sci Pollut Res 23, 377–387 (2016). https://doi.org/10.1007/s11356-015-5258-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5258-0

Keywords

Navigation