Skip to main content

Advertisement

Log in

Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5 % more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80 %. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4 and •O2 were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater.

Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adewuyi YG, Sakyi NY (2013) Removal of nitric oxide by aqueous sodium persulfate simultaneously activated by temperature and Fe2+ in a lab-scale bubble reactor. Ind Eng Chem Res 52:14687–14697

    Article  CAS  Google Scholar 

  • Al-Shamsi MA, Thomson NR (2013) Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Ind Eng Chem Res 52:13564–13571

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2004a) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2004b) Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl Catal B Environ 54:155–163

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD, Gonzalez MA (2006) Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ Sci Technol 40:1000–1007

    Article  CAS  Google Scholar 

  • Cheng P, Yang Z, Wang H, Cheng W, Chen M, Shangguan W, Ding G (2012) TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrog Energy 37:2224–2230

    Article  CAS  Google Scholar 

  • Chiu WA, Jinot J, Scott CS, Makris SL, Cooper GS, Dzubow RC, Bale AS, Evans MV, Guyton KZ, Keshava N (2013) Human health effects of trichloroethylene: key findings and scientific issues. Environ Health Perspect 121:303–311

    Article  Google Scholar 

  • Fang GD, Dionysiou DD, Wang Y, Al-Abed SR, Zhou D-M (2012) Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. J Hazard Mater 227:394–401

    Article  Google Scholar 

  • Fang GD, Dionysiou DD, Al-Abed SR, Zhou D-M (2013) Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs. Appl Catal B Environ 129:325–332

    Article  CAS  Google Scholar 

  • Furman O, Laine DF, Blumenfeld A, Teel AL, Shimizu K, Cheng IF, Watts RJ (2009) Enhanced reactivity of superoxide in water–solid matrices. Environ Sci Technol 43:1528–1533

    Article  CAS  Google Scholar 

  • Furukawa Y, Kim JW, Watkins J, Wilkin RT (2002) Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ Sci Technol 36:5469–5475

    Article  CAS  Google Scholar 

  • Gao YQ, Gao NY, Deng Y, Yang YQ, Ma Y (2012) Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem Eng J 195–296:248–253

    Article  Google Scholar 

  • Gomathi Devi L, Girish Kumar S, Mohan Reddy K, Munikrishnappa C (2009) Photo degradation of methyl orange an azo dye by advanced fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. J Hazard Mater 164:459–467

    Article  CAS  Google Scholar 

  • Guo J, Wang R, Tjiu WW, Pan J, Liu T (2012) Synthesis of Fe nanoparticles@graphene composites for environmental applications. J Hazard Mater 225–226:63–73

    Article  Google Scholar 

  • Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzun L (2014) A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Hussain I, Zhang Y, Huang S (2014) Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. RSC Adv 4:3502–3511

    Article  CAS  Google Scholar 

  • Jabeen H, Chandra V, Jung S, Lee JW, Kim KS, Kim SB (2011) Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585

    Article  CAS  Google Scholar 

  • Jabeen H, Kemp KC, Chandra V (2013) Synthesis of nano zerovalent iron nanoparticles—graphene composite for the treatment of lead contaminated water. J Environ Manag 130:429–435

    Article  CAS  Google Scholar 

  • Kim H-S, Ahn JY, Kim C, Lee S, Hwang I (2014) Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Chemosphere 113:93–100

    Article  CAS  Google Scholar 

  • Ko S, Crimi M, Marvin BK, Holmes V, Huling SG (2012) Comparative study on oxidative treatments of NAPL containing chlorinated ethanes and ethenes using hydrogen peroxide and persulfate in soils. J Environ Manag 108:42–48

    Article  CAS  Google Scholar 

  • Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273

    Article  CAS  Google Scholar 

  • Lai B, Chen Z, Zhou Y, Yang P, Wang J, Chen Z (2013) Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US–ZVI). J Hazard Mater 250–251:220–228

    Article  Google Scholar 

  • Li H, Wan J, Ma Y, Huang M, Wang Y, Chen Y (2014) New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions. Chem Eng J 250:137–147

    Article  CAS  Google Scholar 

  • Li R, Jin X, Megharaj M, Naidu R, Chen Z (2015a) Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chem Eng J 264:587–594

    Article  CAS  Google Scholar 

  • Li Z, Chen Z, Xiang Y, Ling L, Fang J, Shang C, Dionysiou DD (2015b) Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate. Water Res. doi:10.1016/j.watres.2015.06.019

    Google Scholar 

  • Liang C, Guo YY (2010) Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environ Sci Technol 44:8203–8208

    Article  CAS  Google Scholar 

  • Liang C, Lai MC (2008) Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environ Eng Sci 25:1071–1077

    Article  CAS  Google Scholar 

  • Liang C, Su HW (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48:5558–5562

    Article  CAS  Google Scholar 

  • Liang C, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55:1225–1233

    Article  CAS  Google Scholar 

  • Liang C, Wang ZS, Mohanty N (2006) Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20C. Sci Total Environ 370:271–277

    Article  CAS  Google Scholar 

  • Liang C, Wang ZS, Bruell CJ (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66:106–113

    Article  CAS  Google Scholar 

  • Liang C, Huang CF, Chen YJ (2008a) Potential for activated persulfate degradation of BTEX contamination. Water Res 42:4091–4100

    Article  CAS  Google Scholar 

  • Liang C, Huang CF, Mohanty N, Kurakalva RM (2008b) A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73:1540–1543

    Article  CAS  Google Scholar 

  • Liu CS, Shih K, Sun CX, Wang F (2012) Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Sci Total Environ 416:507–512

    Article  CAS  Google Scholar 

  • Liu F, Yang J, Zuo J, Ma D, Gan L, Xie B, Wang P, Yang B (2014) Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study. J Environ Sci 26:1751–1762

    Article  CAS  Google Scholar 

  • Lou X, Wu L, Guo Y, Chen C, Wang Z, Xiao D, Fang C, Liu J, Zhao J, Lu S (2014) Peroxymonosulfate activation by phosphate anion for organics degradation in water. Chemosphere 117:582–585

    Article  CAS  Google Scholar 

  • Oh SY, Kim HW, Park JM, Park HS, Yoon C (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J Hazard Mater 168:346–351

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    Article  Google Scholar 

  • Roshani B, Karpel Vel Leitner N (2011) Effect of persulfate on the oxidation of benzotriazole and humic acid by e-beam irradiation. J Hazard Mater 190:403–408

    Article  CAS  Google Scholar 

  • Sun Y, Ding C, Cheng W, Wang X (2014) Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408

    Article  CAS  Google Scholar 

  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 21:314–318

    Article  CAS  Google Scholar 

  • Tan C, Gao N, Chu W, Li C, Templeton MR (2012) Degradation of diuron by persulfate activated with ferrous ion. Sep Purif Technol 95:44–48

    Article  CAS  Google Scholar 

  • Teel AL, Watts RJ (2002) Degradation of carbon tetrachloride by modified Fenton’s reagent. J Hazard Mater 94:179–189

    Article  CAS  Google Scholar 

  • Thompson RC (1981) Catalytic decomposition of peroxymonosulfate in aqueous perchloric acid by the dual catalysts silver(1+) and peroxydisulfate(2-) and by cobalt(2+). Inorg Chem 20:1005–1010

    Article  CAS  Google Scholar 

  • Usman M, Faure P, Ruby C, Hanna K (2012) Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere 87:234–240

    Article  CAS  Google Scholar 

  • Vikesland PJ, Heathcock AM, Rebodos RL, Makus KE (2007) Particle size and aggregation effects on magnetite reactivity toward carbon tetrachloride. Environ Sci Technol 41:5277–5283

    Article  CAS  Google Scholar 

  • Wang D, Bolton JR, Hofmann R (2012) Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water. Water Res 46:4677–4686

    Article  CAS  Google Scholar 

  • Wang H, Li S, Si Y, Sun Z, Li S, Lin Y (2014a) Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B 2:4442–4448

    Article  CAS  Google Scholar 

  • Wang X, Wang L, Li J, Qiu J, Cai C, Zhang H (2014b) Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Sep Purif Technol 122:41–46

    Article  CAS  Google Scholar 

  • Xu HB, Zhao DY, Li YJ, Liu PY, Dong CX (2014a) Enhanced degradation of ortho-nitrochlorobenzene by the combined system of zero-valent iron reduction and persulfate oxidation in soils. Environ Sci Pollut Res 21:5132–5140

    Article  CAS  Google Scholar 

  • Xu M, Du H, Gu X, Lu S, Qiu Z, Sui Q (2014b) Generation and intensity of active oxygen species in thermally activated persulfate systems for the degradation of trichloroethylene. RSC Adv 4:40511–40517

    Article  CAS  Google Scholar 

  • Zhang YQ, Xie XF, Huang SB, Liang HY (2014) Effect of chelating agent on oxidation rate of aniline in ferrous ion activated persulfate system at neutral pH. J Cent South Univ 21:1441–1447

    Article  CAS  Google Scholar 

  • Zhen G, Lu X, Zhao Y, Chai X, Niu D (2012) Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation. Bioresour Technol 116:259–265

    Article  CAS  Google Scholar 

  • Zhou D, Chen L, Zhang C, Yu Y, Zhang L, Wu F (2014) A novel photochemical system o ferrous sulfite complex: kinetics and mechanisms of rapid decolorization of Acid Orange 7 in aqueous solutions. Water Res 57:87–95

    Article  CAS  Google Scholar 

  • Zhou J, Xiao J, Xiao D, Guo Y, Fang C, Lou X, Wang Z, Liu J (2015) Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol. Chemosphere 446–451

  • Zuo Z, Cai Z, Katsumura Y, Chitose N, Muroya Y (1999) Reinvestigation of the acid–base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants. Radiat Phys Chem 55:15–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (nos. 51273063, 21476143, and 21306049), the Fundamental Research Funds for the Central Universities, the higher school specialized research fund for the doctoral program (222201313005 and 222201314029), 111 Project Grant (B08021), the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-14C01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yisheng Xu or Xuhong Guo.

Additional information

Responsible editor: Santiago V. Luis

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Gu, X., Li, L. et al. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite. Environ Sci Pollut Res 22, 17876–17885 (2015). https://doi.org/10.1007/s11356-015-5034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5034-1

Keywords

Navigation