Skip to main content
Log in

Determination of the psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study addresses the occurrence of carbamazepine and diazepam and their metabolites in the wastewater of the University Hospital (HUSM) of the Federal University of Santa Maria, RS-Brazil. Samples were collected from three sampling points of the sewage treatment system: point A (‘emergency effluent’), point B (‘general effluent’) and point C (‘water course–receptor’). Eight metabolites were identified: carbamazepine-10-11-epoxide, 10-dihydro-carbamazepine, 2-OH-carbamazepine, iminoquinone, acridone, nordiazepam, oxazepam and temazepam. The mean concentrations in the emergency, general effluent and water course–receptor were as follows: 433.0 ± 4.7, 349.0 ± 5.0 and 485.0 ± 5.6 ng L−1, for carbamazepine and 550.0 ± 4.3, 441.0 ± 7.9 and 586.6 ± 9.3 ng L−1, for diazepam, respectively. Liquid chromatography with electrospray ionization tandem mass spectrometry (LC-QqLIT-MS) proved to be a method fit-to-purpose. The determination of carbamazepine and diazepam, and the identification of active metabolites showing environmental persistence (carbamazepine-10-11-epoxide, nordiazepam and oxazepam) revealed the need for a more effective treatment of the HUSM effluent. As far as we know, no similar study has been carried out on the wastewater of Brazilian hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barcelò D (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25. doi:10.1016/j.scitotenv. 2012.08.061

    Article  Google Scholar 

  • Almeida CAA, Brenner CGB, Minetto L, Mallmann CA, Martins AF (2013) Determination of anti-anxiety and anti-epileptic drugs in hospital effluent and a preliminary risk assessment. Chemosphere 93:2349–2355. doi:10.1016/j.chemosphere.2013.08.032

    Article  Google Scholar 

  • Bahlmann A, Brack W, Schneider RJ, Krauss M (2014) Carbamazepine and its metabolites in wastewater: analytical pitfalls and occurrence in Germany and Portugal. Water Res 57:104–114. doi:10.1016/j.watres.2014.03.022

    Article  CAS  Google Scholar 

  • Baker DR, Kasprzyk-Hordern B (2011) Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 218:1620–1631. doi:10.1016/j.chroma. 2011.01.060

    Article  Google Scholar 

  • Brenner CGB, Mallmann CA, Arsand DR, Mayer FM, Martins AF (2010) Determination of sulfamethoxazole and trimethoprim and their metabolites in hospital effluent. Clean Soil Air Water 39:28–34. doi:10.1002/clen.201000162

    Article  Google Scholar 

  • Breton H, Cociglio M, Bressolle F, Peyriere H, Blayac JP, Hillaire-Buys D (2005) Liquid chromatography-electrospray mass spectrometry determination of carbamazepine, oxcarbazepine and eight of their metabolites in human plasma. J Chromatogr B 828:80–90. doi:10.1016/j.jchromb.2005.09.019

    Article  CAS  Google Scholar 

  • Busetti F, Linge KL, Heitz A (2009) Analysis of pharmaceuticals in indirect potable reuse systems using solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216:5807–5818. doi:10.1016/j.chroma.2009.06.001

    Article  CAS  Google Scholar 

  • Calisto V, Domingues MR, Erny GL, Esteves VI (2011) Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Res 45:1095–1104. doi:10.1016/j.watres.2010.10.037

    Article  CAS  Google Scholar 

  • Calza P, Medana C, Padovano E, Giancotti V, Baiocchi C (2012) Identification of the unknown transformation products derived from clarithromycin and carbamazepine using liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom 26:1687–1704. doi:10.1002/rcm.6279

    Article  CAS  Google Scholar 

  • Chong MN, Jin B (2012) Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J Hazard Mater 199–200:135–142. doi:10.1016/j.jhazmat. 2011.10.06

    Article  Google Scholar 

  • Garcia SN, Foster M, Constantine LA, Huggett DB (2012) Field and laboratory fish tissue accumulation of the anti-convulsant drug carbamazepine. Ecotoxicol Environ Saf 84:207–211. doi:10.1016/j.ecoenv.2012.07.013

    Article  CAS  Google Scholar 

  • Gebhardt W, Schröder HFR (2007) Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation. J Chromatogr A 1160:34–43. doi:10.1016/j.chroma.2007.05.075

    Article  CAS  Google Scholar 

  • Gomez MJ, Petrović M, Fernández-Alba AR, Barceló D (2006) Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J Chromatogr A 1114:224–233. doi:10.1016/j.chroma.2006.02.038

    Article  CAS  Google Scholar 

  • Gust M, Fortier M, Garric J, Fournier M, Gagné F (2013) Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis. Sci Total Environ 445–446:210–218. doi:10.1016/ j.scitotenv.2012.12.057

    Article  Google Scholar 

  • Houeto P, Carton A, Guerbet M, Mauclaire A, Gatignol C (2012) Assessment of the health risks related to the presence of drug residues in water for human consumption: application to carbamazepine. Regul Toxicol Pharmacol 62:41–48. doi:10.1016/j.yrtph.2011.11.012

    Article  CAS  Google Scholar 

  • Huerta-Fontela M, Galceran MT, Ventura F (2010) Fast liquid chromatography–quadrupole-linear ion trap mass spectrometry for the analysis of pharmaceuticals and hormones in water resources. J Chromatogr A 1217:4212–4222. doi:10.1016/j.chroma.2009.11.007

    Article  CAS  Google Scholar 

  • Hummel D, Löffler D, Fink G, Ternes TA (2006) Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry. Environ Sci Technol 40:7321–7328. doi:10.1021/es061740w

    Article  CAS  Google Scholar 

  • Jurado A, López-Serna R, Vázquez-Suñé E, Carrera J, Pujades E, Petrovic M, Barceló D (2014) Occurrence of carbamazepine and five metabolites in an urban aquifer. Chemosphere 115:47–53. doi:10.1016/j.chemosphere.2014.01.014

    Article  CAS  Google Scholar 

  • Kim J, Lee S, In S, Choi H, Chung H (2011) Validation of a simultaneous analytical method for the detection of 27 benzodiazepines and metabolites and zolpidem in hair using LC–MS/MS and its application to human and rat hair. J Chromatogr B 879:878–886. doi:10.1016/j.jchromb.2011.02.038

    Article  CAS  Google Scholar 

  • Laurito TL, Mendes GD, Santagada V, Caliendo G, Moraes MEA, De Nucci G (2004) Bromazepam determination in human plasma by high-performance liquid chromatography coupled to tandem mass spectrometry: a highly sensitive and specific tool for bioequivalence studies. J Mass Spectrom 39:168–176. doi:10.1002/jms.590

    Article  CAS  Google Scholar 

  • López-Serna R, Petrović M, Barceló D (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ 440:280–289. doi:10.1016/j.scitotenv.2012.06.027

    Article  Google Scholar 

  • López-Serna R, Jurado A, Vázquez-Suñé E, Carrera J, Petrović M, Barceló D (2013) Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ Pollut 174:305–315. doi:10.1016/j.envpol. 2012.11.022

    Article  Google Scholar 

  • Marchi I, Schappler J, Veuthey J, Serge R (2009) Development and validation of a liquid chromatography–atmospheric pressure photoionization–mass spectrometry method for the quantification of alprazolam, flunitrazepam, and their main metabolites in haemolysed blood. J Chromatogr B 877:2275–2283. doi:10.1016/j.jchromb.2008.12.002

    Article  CAS  Google Scholar 

  • Martín J, Camacho-Muňoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239–240:40–47. doi:10.1016/j.jhazmat.2012.04.068

    Article  Google Scholar 

  • Miao X, Metcalfe CD (2003) Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography-electrospray tandem mass spectrometry. Anal Chem 75:3731–3738. doi:10.1021/ac030082k

    Article  CAS  Google Scholar 

  • Minetto L, Mayer FM, Mallmann CA, Martins AF (2012) Quantification of diclofenac in hospital effluent and identification of metabolites and degradation products. Clean Soil Air Water 40:950–957. doi:10.1002/clen.201100676

    Article  CAS  Google Scholar 

  • Mohapatra DP, Brar SK, Tyagi RD, Picard P, Surampalli RY (2012) Carbamazepine in municipal wastewater and wastewater sludge: ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry. Talanta 99:247–255. doi:10.1016/j.talanta.2012.05.047

    Article  CAS  Google Scholar 

  • Mueller CA, Weinmann W, Dresen S, Schreiber A, Gergov M (2005) Development of a multitarget screening analysis for 301 drugs using a QTrap liquid chromatography/tandem mass spectrometry system and automated library searching. Rapid Commun Mass Spectrom 19:1332–1338. doi:10.1002/rcm.1934

    Article  CAS  Google Scholar 

  • Niessen WMA (2011) Fragmentation of toxicologically relevant drugs in positive-ion liquid chromatography–tandem mass spectrometry. Mass Spec Rev 30:626–663. doi:10.1002/mas.20332

    Article  CAS  Google Scholar 

  • Pérez-Parada A, Gómez-Ramos MM, Bueno MJM, Uclés S, Uclés A, Fernández-Alba AR (2012) Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain). Environ Sci Pollut Res 19:467–481. doi:10.1007/s11356-011-0585-2

    Article  Google Scholar 

  • Risoli A, Cheng JBY, Verkerk UH, Zhao J, Ragno G, Hopkinson AC, Siu KWM (2007) Gas-phase fragmentation of protonated benzodiazepines. Rapid Commun Mass Spectrom 21:2273–2281. doi:10.1002/rcm.3084

    Article  CAS  Google Scholar 

  • Rooyen GF, Badenhorst D, Swart KJ, Hundt HKL, Scanes AF, Hundt AF (2002) Determination of carbamazepine and carbamazepine 10,11-epoxide in human plasma by tandem liquid chromatography–mass spectrometry with electrospray ionization. J Chromatogr B 769:1–7. doi:10.1016/S1570-0232(01)00590-6

    Article  Google Scholar 

  • Rust KY, Baumgartner MR, Meggiolaro N, Kraemer T (2012) Detection and validated quantification of 21 benzodiazepines and 3 “z-drugs”in human hair by LC–MS/MS. Forensic Sci Int 215:64–72. doi:10.1016/j.forsciint.2011.07.052

    Article  CAS  Google Scholar 

  • Segura PA, MacLeod SL, Lemoine P, Sauvé S, Gagnon C (2011) Quantification of carbamazepine and atrazine and screening of suspect organic contaminants in surface and drinking waters. Chemosphere 84:1085–1094. doi:10.1016/j.forsciint.2011.07.052

    Article  CAS  Google Scholar 

  • Silva BF, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85:1331–1339. doi:10.1016/j.chemosphere.2011.07.051

    Article  Google Scholar 

  • Smink BE, Brandsma JE, Dijkhuizen A, Lusthof KJ, Gier JJ, Egberts ACG, Uges DRA (2004) Quantitative analysis of 33 benzodiazepines, metabolites and benzodiazepine-like substances in whole blood by liquid chromatography–(tandem) mass spectrometry. J Chromatogr B 811:13–20. doi:10.1016/j.jchromb.2004.03.079

    Article  CAS  Google Scholar 

  • Smyth WF, McClean S, Ramachandran VN (2000) A study of the electrospray ionisation of pharmacologically significant 1,4-benzodiazepines and their subsequent fragmentation using an ion-trap mass spectrometer. Rapid Commun Mass Spectrom 14:2061–2069. doi:10.1002/1097-0231(20001115)14:21<2061::AID-RCM135>3.0.CO;2–8

    Article  CAS  Google Scholar 

  • Smyth TJP, Robledo VR, Smyth WF (2010) Characterisation of oxazepam degradation products by high-performance liquid chromatography/electrospray ionisation mass spectrometry and electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 24:651–658. doi:10.1002/rcm.4433

    Article  CAS  Google Scholar 

  • Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21. doi:10.1016/j.scitotenv.2011.11.072

    Article  CAS  Google Scholar 

  • Unceta N, Sampedro MC, Bakar NKA, Gómez-Caballero A, Goicolea MA, Barrio RJ (2010) Multi-residue analysis of pharmaceutical compounds in wastewaters by dual solid-phase microextraction coupled to liquid chromatography electrospray ionization ion trap mass spectrometry. J Chromatogr A 1217:3392–3399. doi:10.1016/j.chroma.2010.03.008

    Article  CAS  Google Scholar 

  • Villain M, Concheiro M, Cirimele V, Kintz P (2005) Screening method for benzodiazepines and hypnotics in hair at pg/mg level by liquid chromatography–mass spectrometry/mass spectrometry. J Chromatogr B 825:72–78. doi:10.1016/j.jchromb.2004.12.036

    Article  CAS  Google Scholar 

  • Xiang P, Sun Q, Shen B, Chen P, Liu W, Shen M (2011) Segmental hair analysis using liquid chromatography–tandem mass spectrometry after a single dose of benzodiazepines. Forensic Sci Int 204:19–26. doi:10.1016/j.forsciint.2010.04.046

    Article  CAS  Google Scholar 

  • Zhang Y, Geißen SU (2010) Prediction of carbamazepine in sewage treatment plant effluents and its implications for control strategies of pharmaceutical aquatic contamination. Chemosphere 80:1345–1352. doi:10.1016/j.chemosphere.2010.06.030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the CNPq (Brazilian National Council of Scientific and Technological Development) for its financial support.

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayrton F. Martins.

Additional information

Responsible editor: Ester Heath

Statement of novelty

There is a lack of knowledge about the occurrence of psychoactive drugs and their metabolites in hospital effluents, particularly, of developing countries. Since the wastewater treatment systems are often ineffective, psychoactive drugs are able to reach the aquatic environment. There are no data on the occurrence of carbamazepine and diazepam, or of their metabolites, in Brazilian hospital effluents.

Highlights

• Two psychoactive drugs and their metabolites were studied in hospital effluent.

• Carbamazepine and diazepam were determined in ng L−1.

• Eight metabolites of psychoactive drugs were found.

• The LC-QqLIT-MS method was found to be fit-to-purpose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, C.A.A., Oliveira, M.S., Mallmann, C.A. et al. Determination of the psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites. Environ Sci Pollut Res 22, 17192–17201 (2015). https://doi.org/10.1007/s11356-015-4948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4948-y

Keywords

Navigation