Skip to main content
Log in

Synthesis, characterization, and application of 1-butyl-3-methylimidazolium thiocyanate for extractive desulfurization of liquid fuel

  • Pollution control technologies and alternate energy options
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

1-Butyl-3-methylimidazolium thiocyanate [BMIM]SCN has been presented on extractive desulfurization of liquid fuel. The FTIR, 1H-NMR, and C-NMR have been discussed for the molecular confirmation of synthesized [BMIM]SCN. Further, thermal, conductivity, moisture content, viscosity, and solubility analyses of [BMIM]SCN were carried out. The effects of time, temperature, sulfur compounds, ultrasonication, and recycling of [BMIM]SCN on removal of dibenzothiophene from liquid fuel were also investigated. In extractive desulfurization, removal of dibenzothiophene in n-dodecane was 86.5 % for mass ratio of 1:1 in 30 min at 30 °C under the mild process conditions. [BMIM]SCN could be reused five times without a significant decrease in activity. Also, in the desulfurization of real fuels, multistage extraction was examined. The data and results provided in the present paper explore the significant insights of imidazolium-based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

[BMIM]SCN:

1-Butyl-3-methylimidazolium thiocyanate

IL:

Ionic liquids

DBT:

Dibenzothiophene

TS:

Thiophene

BT:

Benzothiophene

3-MT:

3-Methythiophene

4-MDBT:

4-Methyldibenzothiophene

4,6-DMDBT:

4 6-Dimethyldibenzothiophene

EDS:

Extractive desulfurization system

HDS:

Hydrodesulphurization system

References

  • Archer D, Widegren J, Kirklin D, Magee J (2005) Enthalpy of solution of 1-octyl-3-methylimidazolium tetrafluoroborate in water and in aqueous sodium fluoride. J Chem Eng Data 50:1484–1491

    Article  CAS  Google Scholar 

  • Babich I, Moulijn J (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82:607

    Article  CAS  Google Scholar 

  • Chen X, Liu G, Yuan S, Asumana C, Wang W (2012) Extractive desulfurization of fuel oils with thiazolium based ionic liquids. Sep Sci Technol 47:819–826

    Article  CAS  Google Scholar 

  • Cun Z, Feng W, Xiao-yu P, Xiao-qin L (2011) Study of extraction-oxidation desulfurization of model oil by acidic ionic liquid. J Fuel Chem Technol 39:689–693

    Article  Google Scholar 

  • Dharaskar S (2012) The green solvents for petroleum and hydrocarbon industries. Res J Chem Sci 2(8):80–85

    CAS  Google Scholar 

  • Dharaskar S, Wasewar K, Varma M, Shende D, Yoo C (2013a) Ionic liquids: the novel solvent for removal of dibenzothiophene from liquid fuel. Procedia Eng 51:314–317

    Article  CAS  Google Scholar 

  • Dharaskar S, Wasewar K, Varma M, Shende D, Yoo C (2013b) Deep removal of sulfur from model liquid fuels using 1-butyl-3-methylimidazolium chloride. Procedia Eng 51:416–422

    Article  CAS  Google Scholar 

  • Dharaskar S, Wasewar K, Varma M, Shende D, Yoo C (2013c) Synthesis, characterization and application of 1-butyl-3 methylimidazolium chloride as green material for extractive desulfurization of liquid fuel. Sci World J 2013:1–9

    Article  Google Scholar 

  • Dharaskar S, Wasewar K, Varma M, Shende D (2013d) Extractive deep desulfurization of liquid fuels using Lewis based ionic liquids. J Energy 2013:1–4

    Article  Google Scholar 

  • Dharaskar S, Wasewar K, Varma M, Shende D, Yoo C (2014a) Environmentally benign process for removal of sulfur from liquid fuel using imidazolium based ionic liquids. Res J Chem Environ 18:94–99

    Google Scholar 

  • Dharaskar S, Wasewar K, Varma M, Shende D, Yoo C (2014b) Extractive desulfurization of liquid fuels by energy efficient green thiazolium based ionic liquids. Ind Eng Chem Res 53(51):19845–19854

    Article  CAS  Google Scholar 

  • Dharaskar S, Wasewar K, Varma M, Shende D, Tadi K, Yoo C (2014c) Synthesis, characterization and application of novel trihexyl tetradecyl phosphonium bis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel. Fuel Process Technol 123:1–10

    Article  CAS  Google Scholar 

  • Dumeignil F, Sato K, Imamura M, Matsubayashi N, Payen E, Shimada H (2006) Characterization and hydrodesulfurization activity of CoMo catalysts supported on boron-doped sol-gel alumina. Appl Catal A 315:18–28

    Article  CAS  Google Scholar 

  • Esser J, Wasserscheid P, Jess A (2004) Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem 6:316–322

    Article  Google Scholar 

  • Fan Z, Wang T, He Y (2009) Upgrading and viscosity reducing of heavy oils by [BMIM][AlCl4] ionic liquid. J Fuel Chem Technol 37(6):690–693

    Article  CAS  Google Scholar 

  • Faridbod F, Ganjali M, Norouzi P, Riahi S, Rashedi H. Application of room temperature ionic liquids in electrochemical sensors and biosensors, ionic liquids: applications and perspectives, Prof. Alexander Kokorin (Ed.), ISBN: 978-953-307-248-7, InTech 2011, China

  • Ferrari M, Maggi R, Delmon B, Grange P (2001) Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydro-deoxygenation activity of a CoMo/carbon. J Catal 198:47–55

    Article  CAS  Google Scholar 

  • Forsyth S, Prigle J, MacFarlane D (2004) Ionic liquids—an overview. Aust J Chem 57:113–119

    Article  CAS  Google Scholar 

  • Fraser K, MacFarlane D (2009) Phosphonium-based ionic liquids: an overview. Aust J Chem 62:309–321

    Article  CAS  Google Scholar 

  • Freire M, Carvalho P, Gardas R, Luis M, Santos B, Marrucho I, Coutinho J (2008) Solubility of water in tetradecyl trihexyl phosphonium based ionic liquids. J Chem Eng Data 53:2378–2385

    Article  CAS  Google Scholar 

  • Ge J, Zhou Y, Yang Y, Xue M (2011) Catalytic oxidative desulfurization of gasoline using ionic liquid emulsion system. Ind Eng Chem Res 50:13686–13692

    Article  CAS  Google Scholar 

  • Hagiwara R, Ito Y (2000) Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J Fluor Chem 105:221–227

    Article  CAS  Google Scholar 

  • Isao M, Choi K (2004) An overview of hydrodesulfurization and hydrodenitrogenation. J Jpn Pet Inst 47:145–163

    Article  Google Scholar 

  • Jeon Y, Sung J, Kim D, Seo C, Cheong H, Ouchi Y, Ozawa R, Hamaguchi H (2008) Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate þ water mixtures studied by infrared vibrational spectroscopy. J Phys Chem B 112:923–928

    Article  CAS  Google Scholar 

  • Jiang X, Nie Y, Li X, Wang Z (2008) Imidazolium based alkylphosphate ionic liquids—a potential solvent for extractive desulfurization of fuel. Fuel 87(1):79–84

    Article  CAS  Google Scholar 

  • Kanai K, Nishi T, Iwahashi T, Ouchi Y, Seki K, Harada Y, Shin S (2009) Electronic structures of imidazolium-based ionic liquids. J Electron Spectrosc Relat Phenom 174:110–115

    Article  CAS  Google Scholar 

  • Liu D, Gui J, Song L, Zhang X, Sun Z (2008) Deep desulfurization of diesel fuel by extraction with task specific ionic liquids. Petr Sci Technol 26:973–982

    Article  CAS  Google Scholar 

  • Lu H, Deng C, Ren W, Yang X (2014) Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids. Fuel Process Technol 119:87–91

    Article  CAS  Google Scholar 

  • Ma X, Sakanishi K, Mochida I (1994) Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Ind Eng Chem Res 33:218–222

    Article  CAS  Google Scholar 

  • Ma C, Liu T, Yang L, Zu Y, Wang S, Zhang R (2011) Study on ionic liquid-based ultrasonic-assisted extraction of biphenyl cyclooctene lignans from the fruit of Schisandra chinensis Baill. Anal Chim Acta 689:110–116

    Article  CAS  Google Scholar 

  • Mochizuki Y, Sugawara K (2008) Removal of organic sulfur from hydrocarbon resources using ionic liquids. Energy Fuel 22:3303–3307

    Article  CAS  Google Scholar 

  • MuMurry JJ (1992) Organic chemistry, 3rd edn. Brooks/Cole Publishing Company, Belmont

    Google Scholar 

  • Nie Y, Li C, Sun A, Meng H, Wang Z (2006) Extractive desulfurization of gasoline using imidazolium based phosphoric ionic liquids. Energy Fuel 20:2083–2087

    Article  CAS  Google Scholar 

  • Pawelec B, Mariscal R, Fierro J, Greenwood A, Vasudevan P (2001) Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions. Appl Catal A 206:295–307

    Article  CAS  Google Scholar 

  • Seddon K, Stark A, Torres M (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2285

    Article  CAS  Google Scholar 

  • Sun X, Jin Z, Yang L, Hao J, Zu Y, Wang W, Liu W (2013) Ultrasonic-assisted extraction of procyanidins using ionic liquid solution from Larix gmelinii bark. J Chem 2013:1–9

    Google Scholar 

  • Swatloski R, Holbrey J, Rogers R (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363

    Article  CAS  Google Scholar 

  • Tropsoe H, Gate B (1997) Reactivities in deep catalytic hydrodesulfurization: challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. Polyhedron 16:3213–3217

    Article  Google Scholar 

  • Wasewar K (2013) Low sulfur liquid fuel by deep desulfurization using ionic liquids. J Future Eng Technol 1:8–14

    Google Scholar 

  • Yang L, Wang H, Zu Y, Zhao C, Zhang L, Chen X, Zhang Z (2011) Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem Eng J 172:705–712

    Article  CAS  Google Scholar 

  • Zhang S, Zhang Z (2002) Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature. Green Chem 4:376–379

    Article  CAS  Google Scholar 

  • Zhang S, Zhang Q, Zhang Z (2004) Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind Eng Chem Res 43:614–622

    Article  CAS  Google Scholar 

  • Zhao H (2006) Innovative applications of ionic liquids as “green” engineering liquids. Chem Eng Commun 193:1660–1677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Council of Scientific Industrial Research (CSIR), grant number (22(0492)/09/EMR-II), and the Government of India (principal investigator: Dr. Kailas L. Wasewar).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnil A. Dharaskar.

Additional information

Responsible editor: Santiago V. Luis

Highlights

• [BMIM]SCN was synthesized and employed as extractant for S-removal.

• DBT containing model fuel in [BMIM]SCN could reach 86.5 % of S-removal with mass ratio 1:1 at 30 °C in 30 min., which was the remarkable enrichment of EDS process over HDS.

• [BMIM]SCN could be reused without regeneration more than five times with a slight decrease in activity.

• The EDS process could be an option for environmentally benign method for deep desulfurization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharaskar, S.A., Wasewar, K.L., Varma, M.N. et al. Synthesis, characterization, and application of 1-butyl-3-methylimidazolium thiocyanate for extractive desulfurization of liquid fuel. Environ Sci Pollut Res 23, 9284–9294 (2016). https://doi.org/10.1007/s11356-015-4945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4945-1

Keywords

Navigation