Skip to main content
Log in

Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The emergent plants Acorus calamus, Lythrum salicaria, and Scirpus tabernaemontani were exposed to atrazine for 15, 30, 45, and 60 days in a hydroponic system. Effects were evaluated investigating plant growth, chlorophyll (Chl) content, peroxidase (POD) activity, and malondialdehyde (MDA) content. Results showed that selected plants survived in culture solution with atrazine ≤8 mg L−1, but relative growth rates decreased significantly in the first 15-day exposure. Chla content decreased, but MDA increased with increasing atrazine concentration. S. tabernaemontani was the most insensitive species, followed by A. calamus and L.salicaria. The growth indicators exhibited significant changes in the early stage of atrazine exposure; subsequently, the negative impacts weakened and disappeared. Plant growth may be more representative of emergent plant fitness than physiological endpoints in toxicity assessment of herbicides to emergent plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alla MMN, Hassan NM (2006) Changes of antioxidants levels in two maize lines following atrazine treatments. Plant PhysiolBioch 44:202–210. doi:10.1016/j.plaphy.2006.05.004

    Google Scholar 

  • Arts GHP, Belgers JDM, Hoekzema CH, Thissen JTNM (2008) Sensitivity of submersed freshwater macrophytes and endpoints in laboratory toxicity tests. Environ Pollut 153:199–206. doi:10.1016/j.envpol.2007.07.019

    Article  CAS  Google Scholar 

  • Azzella MM, Rosati L, Iberite M, Bolpagni R, Blasi C (2014) Changes in aquatic plants in the Italian volcanic-lake system detected using current data and historical records. Aquat Bot 112:41–47. doi:10.1016/j.aquabot.2013.07.005

    Article  Google Scholar 

  • Balinova AM, Mondesky M (1999) Pesticide contamination of ground and surface water in Bulgarian Danube plain. J Environ Sci Health B 34:33–46. doi:10.1080/03601239909373182

    Article  CAS  Google Scholar 

  • Brain RA, Hosmer AJ, Desjardins D, Kendall TZ, Krueger HO, Wall SB (2012) Recovery of duckweed from time-varying exposure to atrazine. Environ ToxicolChem 31:1121–1128. doi:10.1002/etc.1806

    Article  CAS  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370. doi:10.1016/0304-3770(86)90031-8

    Article  Google Scholar 

  • Christopher SV, Bird KT (1992) The effects of herbicides on development of Myriophyllumspicatum L. cultured in vitro. J Environ Qual 21:203–207. doi:10.2134/jeq1992.00472425002100020008x

    Article  CAS  Google Scholar 

  • Esser H, Dupuis G, Ebert E, Vogel C, Marco G (1975) S-Triazines. In: Kearney PC, Kaufman DD (eds) Herbicides: chemistry, degradation, and mode of action. Marcel Dekker, New York

    Google Scholar 

  • Fairchild JF, Ruessler DS, Haverland PS, Carlson AR (1997) Comparative Sensitivity of Selenastrumcapricornutum and Lemnaminor to Sixteen Herbicides. Arch Environ Con Tox 32:353–357. doi:10.1007/s002449900196

    Article  CAS  Google Scholar 

  • Ferrat L, Pergent-Martini C, Roméo M (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. AquatToxicol 65:187–204. doi:10.1016/S0166-445X(03)00133-4

    CAS  Google Scholar 

  • Graymore M, Stagnitti F, Allinson G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int 26:483–495. doi:10.1016/S0160-4120(01)00031-9

    Article  CAS  Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chi Chang C (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant PhsysiolBioch 45:62–69. doi:10.1016/j.plaphy.2006.12.005

    CAS  Google Scholar 

  • Huber W (1993) Ecotoxicological relevance of atrazine in aquatic systems. Environ ToxicolChem 12:1865–1881. doi:10.1002/etc.5620121014

    Article  CAS  Google Scholar 

  • Huggett DB, Brooks BW, Peterson B, Foran CM, Schlenk D (2002) Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-Blockers) on aquatic organisms. Arch Environ Con Tox 43:229–235. doi:10.1007/s00244-002-1182-7

    Article  CAS  Google Scholar 

  • Ivanov SV, Alexieva VS, Karanov EN (2005) Cumulative effect of low and high atrazine concentrations on Arabidopsis thaliana plants. Russ J Plant Physiol 52:213–219. doi:10.1007/s11183-005-0033-6

    Article  CAS  Google Scholar 

  • Jablonowski ND, Schaffer A, Burauel P (2011) Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environ SciPollut R 18:328–331. doi:10.1007/s11356-010-0431-y

    Article  CAS  Google Scholar 

  • Jones TW, Winchell L (1984) Uptake and photosynthetic inhibition by atrazine and its degradation products on four species of submerged vascular plants. J Environ Qual 13:243–247. doi:10.2134/jeq1984.00472425001300020014x

    Article  CAS  Google Scholar 

  • Kemp WM, Boynton WR, Twilley RR, Means JC, Stevenson JC (1983) The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes. Mar TechnolSoc J 17:78–89

    Google Scholar 

  • Knauert S, Singer H, Hollender J, Knauer K (2010) Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Environ Pollut 158:167–174. doi:10.1016/j.envpol.2009.07.023

    Article  CAS  Google Scholar 

  • Kruawal K, Sacher F, Werner A, Muller J, Knepper TP (2005) Chemical water quality in Thailand and its impacts on the drinking water production in Thailand. Sci Total Environ 340:57–70. doi:10.1016/j.scitotenv.2004.08.008

    Article  CAS  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, George MF (2008) Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification. J Environ Qual 37:196–206. doi:10.2134/jeq2006.0503

    Article  CAS  Google Scholar 

  • Lytle JS, Lytle TF (1998) Atrazine effects on estuarine macrophytes Spartina alterniflora and Juncus roemerianus. Environ ToxicolChem 17:1972–1978. doi:10.1002/etc.5620171012

    Article  CAS  Google Scholar 

  • Marecik R, Bialas W, Cyplik P, Lawniczak L, Chrzanowski L (2012) Phytoremediation potential of three wetland plant species toward atrazine in environmentally relevant concentrations. Pol J Environ Stud 21:697–702

    CAS  Google Scholar 

  • McGregor EB, Solomon KR, Hanson ML (2008) Effects of planting system design on the toxicological sensitivity of Myriophyllum spicatum and Elodea canadensis to atrazine. Chemosphere 73:249–260. doi:10.1016/j.chemosphere.2008.06.045

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  CAS  Google Scholar 

  • Mofeed J, Mosleh YY (2013) Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotox Environ Safe 95:234–240. doi:10.1016/j.ecoenv.2013.05.023

    Article  CAS  Google Scholar 

  • Moore MT, Locke MA (2012) Phytotoxicity of atrazine, S-metolachlor, and permethrin to Typha latifolia (Linneaus) germination and seedling growth. Bull Environ ContamToxicol 89:292–295. doi:10.1007/s00128-012-0682-z

    Article  CAS  Google Scholar 

  • Morgan MK (1996) Teratogenic potential of atrazine and 2, 4-D using FETAX. J Toxicol Environ Health 48:151–168. doi:10.1080/009841096161401

    Article  CAS  Google Scholar 

  • Peterson HG, Boutin C, Martin PA, Freemark KE, Ruecker NJ, Moody MJ (1994) Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. AquatToxicol 28:275–292. doi:10.1016/0166-445X(94)90038-8

    CAS  Google Scholar 

  • Qian H, Sheng GD, Liu W, Lu Y, Liu Z, Fu Z (2008) Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environ ToxicolChem 27:182–187. doi:10.1897/07-163.1

    Article  CAS  Google Scholar 

  • Ralph PJ (2000) Herbicide toxicity ofHalophilaovalis assessed by chlorophyll a fluorescence. Aquat Bot 66:141–152. doi:10.1016/S0304-3770(99)00024-8

    Article  CAS  Google Scholar 

  • Ritter WF (1990) Pesticide contamination of ground water in the United States—a review. J Environ Sci Health, Part B 25:1–29. doi:10.1080/03601239009372674

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Pedersen NL, Thorsgaard I, Moeslund B, Borum J, Brodersen KP (2008) 100 years of vegetation decline and recovery in Lake Fure, Denmark. J Ecol 96:260–271. doi:10.1111/j.1365-2745.2007.01339.x

    Article  Google Scholar 

  • Schwarzschild AC, MacIntyre WG, Moore KA, Laurence Libelo E (1994) Zostera marina L. growth response to atrazine in root-rhizome and whole plant exposure experiments. J Exp Mar BiolEcol 183:77–89. doi:10.1016/0022-0981(94)90158-9

    Article  CAS  Google Scholar 

  • Shimabukuro RH, Frear DS, Swanson HR, Walsh WC (1971) Glutathione conjugation: An enzymatic basis for atrazine resistance in corn. Plant Physiol 47:10–14. doi:10.1104/pp.47.1.10

    Article  CAS  Google Scholar 

  • Solomon KR, Baker DB, Richards RP, Dixon KR, Klaine SJ, La Point TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP (1996) Ecological risk assessment of atrazine in North American surface waters. Environ ToxicolChem 15:31–76. doi:10.1002/etc.5620150105

    Article  CAS  Google Scholar 

  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ ToxicolChem 31:2147–2152. doi:10.1002/etc.1933

    Article  CAS  Google Scholar 

  • Strain HH, Svec WA (1966) Extraction, separation, estimation, and isolation of the chlorophylls. In: Vernon LP, Seely GR (eds) The Chlorophylls. Academic Press, New York, pp 21–66

    Google Scholar 

  • Van den Brink PJ, Hartgers EM, Fettweis U, Crum SJH, Van Donk E, Brock T (1997) Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron I. primary producers. Ecotox Environ Safe 38:13–24. doi:10.1006/eesa.1997.1555

    Article  Google Scholar 

  • Vymazal J (2013) Emergent plants used in free water surface constructed wetlands: a review. EcolEng 61:582–592. doi:10.1016/j.ecoleng.2013.06.023

    Google Scholar 

  • Wang Q, Que X, Li C, Xiao B (2014) Phytotoxicity of atrazine to emergent hydrophyte, Iris pseudacorus L. B Environ ContamTox 92:300–305. doi:10.1007/s00128-013-1178-1

    Article  CAS  Google Scholar 

  • Wang Q, Zhang W, Li C, Xiao B (2012) Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water SciTechnol 66:1282–1288. doi:10.2166/wst.2012.320

    CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Winkelmann DA, Klaine SJ (1991) Degradation and bound residue formation of four atrazine metabolites, deethylatrazine, deisopropylatrazine, dealkylatrazine and hydroxyatrazine, in a Western Tennessee soil. Environ ToxicolChem 10:347–354. doi:10.1002/etc.5620100307

    Article  CAS  Google Scholar 

  • Wu J, Cheng S, Li Z, Guo W, Zhong F, Yin D (2013) Case study on rehabilitation of a polluted urban water body in Yangtze River Basin. Environ SciPollut R 20:7038–7045. doi:10.1007/s11356-012-1351-9

    Article  CAS  Google Scholar 

  • Zaya RM, Amini Z, Whitaker AS, Kohler SL, Ide CF (2011) Atrazine exposure affects growth, body condition and liver health in Xenopuslaevis tadpoles. AquatToxicol 104:243–253. doi:10.1016/j.aquatox.2011.04.021

    CAS  Google Scholar 

  • Zhang K, Li Y, Zu Y, Chen J (2013) Response characteristics of reactive oxygen metabolism in pennisetumhydridum to atrazine stress. Acta Bot Boreal-Occident Sin 33:2479–2485 (in Chinese with English abstract)

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation (31370540) and National Key Technologies R&D Program of China (2012BAD14B02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghai Wang or Xiaoe Que.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Que, X., Zheng, R. et al. Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants. Environ Sci Pollut Res 22, 9646–9657 (2015). https://doi.org/10.1007/s11356-015-4104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4104-8

Keywords

Navigation