Skip to main content
Log in

Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The degradation performance of pentachlorophenol (PCP) by the microwave-activated persulfate (MW/PS) process was investigated in this study. The results indicated that degradation efficiency of PCP in the MW/PS process followed pseudo-first-order kinetics, and compared with conventional heating, microwave heating has a special effect of increasing the reaction rate and reducing the process time. A higher persulfate concentration and reaction temperature accelerated the PCP degradation rate. Meanwhile, increasing the pH value and ionic strength of the phosphate buffer slowed down the degradation rate. The addition of ethanol and tert-butyl alcohol as hydroxyl radical and sulfate radical scavengers proved that the sulfate radicals were the dominant active species in the MW/PS process. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the intermediate products, and then a plausible degradation pathway involving dechlorination, hydrolysis, and mineralization was proposed. The acute toxicity of PCP, as tested with Photobacterium phosphoreum, Vibrio fischeri, and Vibrio qinghaiensis, was negated quickly during the MW/PS process, which was in agreement with the nearly complete mineralization of PCP. These results showed that the MW/PS process could achieve a high mineralization level in a short time, which provided an efficient way for PCP elimination from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad M, Teel AL, Watts RJ (2013) Mechanism of persulfate activation by phenols. Environ Sci Technol 47:5864–5871

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD, Gonzalez MA (2005) Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ Sci Technol 40:1000–1007

    Article  Google Scholar 

  • Costa C, Santos VHS, Araujo PHH, Sayer C, Santos AF, Fortuny M (2009) Microwave-assisted rapid decomposition of persulfate. Eur Polym J 45:2011–2016

    Article  CAS  Google Scholar 

  • Costanza J, Otaño G, Callaghan J, Pennell KD (2010) PCE oxidation by sodium persulfate in the presence of solids. Environ Sci Technol 44:9445–9450

    Article  CAS  Google Scholar 

  • Crosby DG (1981) Environmental chemistry of pentachlorophenol. Pure Appl Chem 53:1051–1080

    Article  Google Scholar 

  • Deng S, Ma R, Yu Q, Huang J, Yu G (2009) Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. J Hazard Mater 165:408–414

    Article  CAS  Google Scholar 

  • DIN (2007) Water quality-determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test), part 3: method using freeze-dried bacteria.

  • Dogliotti L, Hayon E (1967) Flash photolysis of persulfate ions in aqueous solutions. The sulfate and ozonide radical anions. J Phys Chem 71:2511–2516

    Article  CAS  Google Scholar 

  • Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428

    Article  CAS  Google Scholar 

  • Garg S, Tripathi M, Singh S, Singh A (2013) Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res 20:2288–2304

    Article  CAS  Google Scholar 

  • Hayward K (1998) Drinking water contaminant hit-list for US EPA. vol 21

  • House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62:185–203

    Article  CAS  Google Scholar 

  • Huang K-C, Couttenye RA, Hoag GE (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49:413–420

    Article  CAS  Google Scholar 

  • Jia H, Gu C, Li H, Fan X, Li S, Wang C (2012) Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0. Environ Sci Pollut Res 19:3498–3505

    Article  CAS  Google Scholar 

  • Kaiser KLE, Ribo JM (1988) Photobacterium phosphoreum toxicity bioassay. II. Toxicity data compilation. Toxic Assess 3:195–237

    Article  CAS  Google Scholar 

  • Kim Y-H, Carraway ER (2000) Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34:2014–2017

    Article  CAS  Google Scholar 

  • Kolthoff IM, Miller IK (1951) The chemistry of persulfate I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J Am Chem Soc 73:3055–3059

    Article  CAS  Google Scholar 

  • Kuang J, Huang J, Wang B, Cao Q, Deng S, Yu G (2013) Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. Water Res 47:2863–2872

    Article  CAS  Google Scholar 

  • Lee Y-C, Lo S-L, Chiueh P-T, Chang D-G (2009) Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res 43:2811–2816

    Article  CAS  Google Scholar 

  • Liang C, Su H-W (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48:5558–5562

    Article  CAS  Google Scholar 

  • Liang C, Wang Z-S, Bruell CJ (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66:106–113

    Article  CAS  Google Scholar 

  • Lipczynska-Kochany E, Sprah G, Harms S (1995) Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 30:9–20

    Article  CAS  Google Scholar 

  • Liu X, Quan X, Bo L, Chen S, Zhao Y (2004) Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon 42:415–422

    Article  CAS  Google Scholar 

  • Maruthamuthu P, Neta P (1978) Phosphate radicals. Spectra, acid–base equilibriums, and reactions with inorganic compounds. J Phys Chem 82:710–713

    Article  CAS  Google Scholar 

  • McElroy WJ, Waygood SJ (1990) Kinetics of the reactions of the SO4 radical with SO4 , S2O8 2−, H2O and Fe2+. J Chem Soc Faraday Trans 86:2557–2564

    Article  CAS  Google Scholar 

  • Nie M, Yang Y, Zhang Z, Yan C, Wang X, Li H, Dong W (2014) Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chem Eng J 246:373–382

    Article  CAS  Google Scholar 

  • Niu J, Bao Y, Li Y, Chai Z (2013) Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2–Sb electrodes. Chemosphere 92:1571–1577

    Article  CAS  Google Scholar 

  • Peyton GR (1993) The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar Chem 41:91–103

    Article  CAS  Google Scholar 

  • Pu X, Cutright T (2007) Degradation of pentachlorophenol by pure and mixed cultures in two different soils. Environ Sci Pollut Res 14:244–250

    Article  CAS  Google Scholar 

  • Qi C, Liu X, Lin C, Zhang X, Ma J, Tan H, Ye W (2014) Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity. Chem Eng J 249:6–14

    Article  CAS  Google Scholar 

  • Rodgers JD, Jedral W, Bunce NJ (1999) Electrochemical oxidation of chlorinated phenols. Environ Sci Technol 33:1453–1457

    Article  CAS  Google Scholar 

  • Sung M, Lee SZ, Chan HL (2012) Kinetic modeling of ring byproducts during ozonation of pentachlorophenol in water. Sep Purif Technol 84:125–131

    Article  CAS  Google Scholar 

  • ThanhThuy TT, Feng H, Cai Q (2013) Photocatalytic degradation of pentachlorophenol on ZnSe/TiO2 supported by photo-Fenton system. Chem Eng J 223:379–387

    Article  CAS  Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, MosbÆK H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Criti Rev Env Sci Technol 40:55–91

    Article  CAS  Google Scholar 

  • Vallejo M, San Román MF, Ortiz I (2013) Quantitative assessment of the formation of polychlorinated derivatives, PCDD/Fs, in the electrochemical oxidation of 2-chlorophenol as function of the electrolyte type. Environ Sci Technol 47:12400–12408

    Article  CAS  Google Scholar 

  • Vijayalakshmi SP, Chakraborty J, Madras G (2005) Thermal and microwave-assisted oxidative degradation of poly(ethylene oxide). J Appl Polym Sci 96:2090–2096

    Article  CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41:1010–1015

    Article  CAS  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edition. Malta

  • Xu L, Yuan R, Guo Y, Xiao D, Cao Y, Wang Z, Liu J (2013) Sulfate radical-induced degradation of 2,4,6-trichlorophenol: a de novo formation of chlorinated compounds. Chem Eng J 217:169–173

    Article  CAS  Google Scholar 

  • Xu H-b, D-y Z, Y-j L, P-y L, C-x D (2014) Enhanced degradation of ortho-nitrochlorobenzene by the combined system of zero-valent iron reduction and persulfate oxidation in soils. Environ Sci Pollut Res 21:5132–5140

    Article  CAS  Google Scholar 

  • Yalfani MS, Georgi A, Contreras S, Medina F, Kopinke F-D (2011) Chlorophenol degradation using a one-pot reduction–oxidation process. Appl Catal B Environ 104:161–168

    Article  CAS  Google Scholar 

  • Yang S, Wang P, Yang X, Wei G, Zhang W, Shan L (2009) A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. J Environ Sci 21:1175–1180

    Article  CAS  Google Scholar 

  • Zhao J, Zhang Y, Quan X, Chen S (2010) Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Sep Purif Technol 71:302–307

    Article  CAS  Google Scholar 

  • Zhao L, Hou H, Fujii A, Hosomi M, Li F (2014) Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation. Environ Sci Pollut Res 21:7457–7465

    Article  CAS  Google Scholar 

  • Zheng W, Wang X, Yu H, Tao X, Zhou Y, Qu W (2011) Global trends and diversity in pentachlorophenol levels in the environment and in humans: a meta-analysis. Environ Sci Technol 45:4668–4675

    Article  CAS  Google Scholar 

  • Zimbron JA, Reardon KF (2009) Fenton’s oxidation of pentachlorophenol. Water Res 43:1831–1840

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Science and Technology (Project No. 2013AA06A305) and the Ministry of Environmental Protection of China (Project No. 201309044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xitao Liu.

Additional information

Responsible editor: Angeles Blanco

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Liu, X., Zhao, W. et al. Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate. Environ Sci Pollut Res 22, 4670–4679 (2015). https://doi.org/10.1007/s11356-014-3718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3718-6

Keywords

Navigation