Skip to main content

Advertisement

Log in

Copper, zinc and lead biogeochemistry in aquatic and land plants from the Iberian Pyrite Belt (Portugal) and north of Morocco mining areas

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The ability of aquatic (Juncus effusus L., Scirpus holoschoenus L., Thypha latifolia L. and Juncus sp.) and land (Cistus ladanifer L., Erica andevalensis C.-R., Nerium oleander L., Isatis tinctoria L., Rosmarinus officinalis L., Cynodon dactylon L. and Hordeum murinum L.) plants from Portugal (Aljustrel, Lousal and São Domingos) and Morocco (Tighza and Zeida) mining areas to uptake, translocate and tolerate heavy metals (Cu, Zn and Pb) was evaluated. The soils (rhizosphere) of the first mining area are characterized by high acidity conditions (pH 2–5), whereas from the second area, by alkaline conditions (pH 7.0–8.5). Physicochemical parameters and mineralogy of the rhizosphere were determined from both areas. Chemical analysis of plants and the rhizosphere was carried out by inductively coupled plasma emission spectrometry. The sequential chemical extraction procedure was applied for rhizosphere samples collected from both mining areas. In the acid conditions, the aquatic plants show a high capacity for Zn bioaccumulation and translocation and less for Pb, reflecting the following metal mobility sequence: Zn > Cu > Pb. Kaolinite detected in the roots by infrared spectroscopy (IR) contributed to metal fixation (i.e. Cu), reducing its translocation to the aerial parts. Lead identified in the roots of land plants (e.g. E. andevalensis) was probably adsorbed by C–H functional groups identified by IR, being easily translocated to the aerial parts. It was found that aquatic plants are more efficient for phytostabilization than bioaccumulation. Lead is more bioavailable in the rhizosphere from Morocco mining areas due to scarcity of minerals with high adsorption ability, being absorbed and translocated by both aquatic and land plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu MM, Tavares MT, Batista MJ (2008) Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugal. J Geochem Explor 96:210–222. doi:10.1016/j.gexplo.2007.04.007

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Alvarenga PM, Araújo MF, Silva AL (2004) Elemental uptake and root-leaves transfer in Cistus ladanifer L. growing in a contaminated pyrite mining area (Aljustrel—Portugal). Water, Air, Soil Pollut 152:81–96. doi:10.1023/B:WATE.0000015333.24165.5e

    Article  CAS  Google Scholar 

  • Andrade RFD’, Schermerhorn LJG (1971) Aljustrel e Gavião. In: Carvalho D, Goinhas JAC, Schermerhorn (eds) Principais Jazigos Minerais do Sul de Portugal. I Congresso Hispano-Luso-Americano de Geologia Económica. Livro-Guia nº4. Direcção-Geral de Minas e Serviços Geológicos, Lisboa, pp 32–59

  • Ater M, Lefèbvre C, Gruber W, Meerts P (2000) A phytogeochemical survey of the flora of ultramafic and adjacent normal soils in North Morocco. Plant Soil 218:127–135. doi:10.1023/A:1014925007960

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAA (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–107

    Google Scholar 

  • Batista MJ, Abreu MM, Serrano Pinto M (2007) Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt, Portugal. J Geochem Explor 92:159–176. doi:10.1016/j.gexplo.2006.08.004

    Article  CAS  Google Scholar 

  • Bobos I, Duplay J, Rocha J, Gomes C (2001) Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal. Clays Clay Miner 49:596–607. doi:10.1346/CCMN.2001.0490609

    Article  CAS  Google Scholar 

  • Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817. doi:10.1016/j.chemosphere.2005.07.076

    Article  CAS  Google Scholar 

  • Boyd RS (1998) Hyperaccumulation as a plant defensive strategy. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. Cab International, Wallingford, pp 181–201

    Google Scholar 

  • Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7. doi:10.1007/s000490050002

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Biogeochemistry and hyperaccumulators. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. Cab International, Wallingford, pp 95–118

    Google Scholar 

  • Cardoso Fonseca E, Martin H (1986) The selective extraction of Pb and Zn in selected mineral and soil samples. Application in geochemical exploration (Portugal). J Geochem Explor 26:231–248. doi:10.1016/0375-6742(86)90074-9

    Article  Google Scholar 

  • Carvalho D (1971) Mina de S. Domingos. In: Carvalho D, Goinhas JAC, Schermerhorn (eds) Principais Jazigos Minerais do Sul de Portugal. I Congresso Hispano-Luso-Americano de Geologia Económica. Livro-Guia nº4. Direcção-Geral de Minas e Serviços Geológicos, Lisboa, pp 59–64

  • Carvalho D, Conde L, Enrile JH, Oliveira V, Schermerhorn LJGS (1976) Livro–Guia das excursões geológicas na Faixa Piritosa Ibérica. Comun Serv Geol Port Tomo LX:271–315

    Google Scholar 

  • Chang P, Kim J-Y, Kim K-W (2005) Concentrations of arsenic and heavy metals in vegetation at two abandoned mine tailings in South Korea. Environ Geochem and Health 27:109–119. doi:10.1007/s10653-005-0130-7

    Article  CAS  Google Scholar 

  • Chapman SJ, Campbell CD, Fraser AR, Puri G (2001) FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biol Biochem 33:1193–1200. doi:10.1016/S0038-0717(01)00023-2

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochim 88:1707–1719. doi:10.1016/j.biochi.2006.07.003

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315. doi:10.1016/S1360-1385(02)02295-1

    Article  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40. doi:10.1016/j.envpol.2004.03.030

    Article  CAS  Google Scholar 

  • Dupuy N, Douay F (2001) Infrared and chemometrics study of the interaction between heavy metals and organic matter in soils. Spectrochim Acta Part A 57:1037–1047. doi:10.1016/S1386-1425(00)00420-0

    Article  Google Scholar 

  • Durães N (2011) Geoquímica dos metais bivalentes tóxicos no sistema solos - sedimentos - águas - plantas em zonas contaminadas áridas e semi-áridas. PhD Thesis, Faculdade de Ciências da Universidade do Porto

  • Durães N, Bobos I, Ferreira da Silva E (2008) Chemistry and FT-IR spectroscopic studies of plants from contaminated mining sites in the Iberian Pyrite Belt, Portugal. Mineral Mag 72:405–409. doi:10.1180/minmag.2008.072.1.405

    Article  Google Scholar 

  • Ephraim JH, Allard B (1993) Influence of humic substances on the uptake of metal ions by naturally occurring materials. In: Marinsky JA, Marcus Y (eds) Ion exchange and solvent extraction: a series of advances, vol 11. CRC Press, New York, pp 335–362

  • Esposito S, Sorbo S, Conte B, Basile A (2012) Effects of heavy metals on ultrastructure and HSP70S induction in the aquatic moss Leptodictyum riparium Hedw. Int J Phytorem 14:443–455. doi:10.1080/15226514.2011.620904

    Article  CAS  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72. doi:10.1016/S0160-4120(03)00149-1

    Article  CAS  Google Scholar 

  • Freitas MC, Pacheco AMG, Anawar HM, Dionísio I, Dung HM, Canha N, Bettencourt A, Henriques F, Pinto-Gomes CJ, Capelo S (2009) Determination of phytoextraction potential of plant species for toxic elements in soils of abandoned sulphide-mining areas. J Radioanal Nucl Chem 282:21–27. doi:10.1007/s10967-009-0222-4

    Article  CAS  Google Scholar 

  • Gaspar O (1996) Microscopia e petrologia de minérios, aplicada à génese, exploração e mineralurgia dos sulfuretos maciços dos jazigos de Aljustrel e Neves Corvo. Est Notas Trab Inst Geol e Min Tomo 38:3–195

    Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265. doi:10.1016/S0065-2113(08)60506-4

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59. doi:10.1023/A:1022371130939

    Article  CAS  Google Scholar 

  • Inácio M, Pereira V, Pinto M (2008) The soil geochemical atlas of Portugal: overview and applications. J Geochem Explor 98:22–33. doi:10.1016/j.gexplo.2007.10.004

    Article  Google Scholar 

  • ISO 10390 (1994) Standard of soil quality—determination of pH. International Organization for Standardization

  • Jébrak M (1985) Le district filonien à Pb-Zn-Ag et carbonates du Jebel Aouam (Maroc central). Bull Mineral 108:487–498

    Google Scholar 

  • Jébrak M, Marcoux É, Nasloubi M, Zaharaoui M (1998) From sandstone- to carbonate-hosted stratabound deposits: an isotope study of galena in the Upper-Moulouya District (Morocco). Mineral Deposita 33:406–415. doi:10.1007/s001260050158

    Article  Google Scholar 

  • Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Appl Geochem 11:53–59. doi:10.1016/0883-2927(95)00075-5

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Karathanasis AD, Johnson CM (2003) Metal removal potential by three aquatic plants in an acid mine drainage wetland. Min Water Environ 22:22–30. doi:10.1007/s102300300004

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodôvar GR, Pascual E, Sáez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt—review and preface to the thematic issue. Mineral Deposita 33:2–30. doi:10.1007/s001260050130

    Article  CAS  Google Scholar 

  • Lieth H, Markert B (1985) Concentration cadasters of chemical elements in contrasting ecosystems. Naturwiss 72:322–324. doi:10.1007/BF00454775

    Article  CAS  Google Scholar 

  • Matzke K (1971) Mina do Lousal. In: Carvalho D, Goinhas JAC, Schermerhorn (eds) Principais Jazigos Minerais do Sul de Portugal. I Congresso Hispano-Luso-Americano de Geologia Económica. Livro-Guia nº4. Direcção-Geral de Minas e Serviços Geológicos, Lisboa, pp 25–32

  • McBride MB (1978) Copper(II) interactions with kaolinite: factors controlling adsorption. Clays Clay Miner 26:101–106. doi:10.1346/CCMN.1978.0260204

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. doi:10.1016/S0958-1669(03)00060-0

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214. doi:10.1023/A:1010358708525

    Article  CAS  Google Scholar 

  • Michard A (1976) Elements de geologie Marocaine. Notes Mem Serv Geol Maroc, no 252

  • Mingorance MD, Valdés B, Rossini Oliva S (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520. doi:10.1016/j.envint.2007.01.005

    Article  CAS  Google Scholar 

  • Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci 23:133–139. doi:10.1016/S0169-1317(03)00095-4

    Article  CAS  Google Scholar 

  • Mitsios IK, Danalatos NG (2006) Bioavailability of trace elements in relation to root modification in the rhizosphere. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment—biogeochemistry, biotechnology and bioremediation. CRC, Taylor & Francis Group, LLC, Boca Raton, pp 25–37

    Google Scholar 

  • Quesada C (1991) Geological constraints on the Paleozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif. Tectonophys 185:225–245. doi:10.1016/0040-1951(91)90446-Y

    Article  Google Scholar 

  • Ramirez FJ, Luque P, Heredia A, Bukovac MJ (1992) Fourier transform IR study of enzymatically isolated tomato fruit cuticular membrane. Biopolym 32:1425–1429. doi:10.1002/bip.360321102

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181. doi:10.1016/j.plantsci.2010.08.016

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (1998) Chemical elements in the environment—factsheets for the geochemist and environmental scientist. Springer-Verlag, Berlin

    Google Scholar 

  • Robinson B, Bolan N, Mahimairaja S, Clothier B (2006) Solubility, mobility, and bioaccumulation of trace elements: abiotic processes in the rhizosphere. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment—biogeochemistry, biotechnology and bioremediation. CRC, Taylor & Francis Group, LLC, Boca Raton, pp 97–110

    Google Scholar 

  • Santos ES, Abreu MM, Nabais C, Saraiva JA (2009) Trace elements and activity of antioxidative enzymes in Cistus ladanifer L. growing on an abandoned mine area. Ecotox 18:860–868. doi:10.1007/s10646-009-0329-y

    Article  CAS  Google Scholar 

  • Silva JB, Oliveira JT, Ribeiro A (1990) Structural outline of the South Portuguese Zone. In: Dallmeyer RD, Martinez Garcia E (eds) Pre-Mesozoic Geology of Iberia. Springer-Verlag, Berlim, pp 348–362

  • St-Cyr L, Campbell PGC (1996) Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochem 33:45–76. doi:10.1007/BF00000969

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Botany 47:271–280. doi:10.1016/S0098-8472(02)00002-3

    Article  CAS  Google Scholar 

  • Tanner W, Beevers H (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci U S A 98:9443–9447. doi:10.1073/pnas.161279898

    Article  CAS  Google Scholar 

  • Turnau K, Henriques FS, Anielska T, Renker C, Buscot F (2007) Metal uptake and detoxification mechanisms in Erica andevalensis growing in pyrite mine tailing. Environ Exp Botany 61:117–123. doi:10.1016/j.envexpbot.2007.05.001

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. doi:10.1111/j.1469-8137.2008.02748.x

    Article  CAS  Google Scholar 

  • Watanabe Y (2002) 40Ar/39Ar geochronologic constraints on the timing of massive sulfide and vein-type Pb-Zn mineralization in the Western Meseta of Morocco. Econ Geol 97:145–157. doi:10.2113/gsecongeo.97.1.145

    Article  CAS  Google Scholar 

  • Webb JS (1958) Observations on the geology and origin of the San Domingos pyrite deposit, Portugal. Comun Serv Geol Port 42:129–143

    CAS  Google Scholar 

Download references

Acknowledgements

Nuno Durães is grateful to the Fundação para a Ciência e a Tecnologia—Lisboa (Portugal) for the financial support in the frame of a PhD scholarship (SFRH/BD/22413/2005) and to the Centre of Geology, University of Porto. The authors thank Professor Elena Maestri for the excellent editorial handling during the review process and also the two reviewers for their very careful revision and pertinent remarks on a previous draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Durães.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durães, N., Bobos, I., Ferreira da Silva, E. et al. Copper, zinc and lead biogeochemistry in aquatic and land plants from the Iberian Pyrite Belt (Portugal) and north of Morocco mining areas. Environ Sci Pollut Res 22, 2087–2105 (2015). https://doi.org/10.1007/s11356-014-3394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3394-6

Keywords

Navigation