Skip to main content
Log in

The ChimERA project: coupling mechanistic exposure and effect models into an integrated platform for ecological risk assessment

  • Research and Education Highlights
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Current techniques for the ecological risk assessment of chemical substances are often criticised for their lack of environmental realism, ecological relevance and methodological accuracy. ChimERA is a 3-year project (2013–2016), funded by Cefic’s Long Range Initiative (LRI) that aims to address some of these concerns by developing and testing mechanistic fate and effect models, and coupling of these models into one integrated platform for risk assessment. This paper discusses the backdrop against which this project was initiated and lists its objectives and planned methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Ashauer R, Agatz A, Albert C et al (2011) Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts. Environ Toxicol Chem 30:2519–2524. doi:10.1002/etc.639

    Article  CAS  Google Scholar 

  • Augusiak J, Van den Brink PJ, Grimm V (2014) Merging validation and evaluation of ecological models to “evaludation”: a review of terminology and a practical approach. Ecol Model.  doi:10.1016/j.ecolmodel.2013.11.009

  • Cairns J (1988) Putting the eco in ecotoxicology. Regul Toxicol Pharmacol 8:226–238. doi:10.1016/0273-2300(88)90031-1

    Article  Google Scholar 

  • Caquet T, Hanson ML, Roucaute M et al (2007) Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. II. Benthic macroinvertebrate responses. Environ Toxicol Chem 26:1280–1290. doi:10.1897/06-250r.1

    Article  CAS  Google Scholar 

  • De Laender F, De Schamphelaere KAC, Vanrolleghem PA, Janssen CR (2008a) Do we have to incorporate ecological interactions in the sensitivity assessment of ecosystems? An examination of a theoretical assumption underlying species sensitivity distribution models. Environ Int 34:390–396. doi:10.1016/j.envint.2007.09.006

    Article  CAS  Google Scholar 

  • De Laender F, De Schamphelaere KAC, Vanrolleghem PA, Janssen CR (2008b) Validation of an ecosystem modelling approach as a tool for ecological effect assessments. Chemosphere 71:529–545. doi:10.1016/j.chemosphere.2007.09.052

    Article  CAS  Google Scholar 

  • De Laender F, Soetaert K, Middelburg JJ (2010) Inferring chemical effects on carbon flows in aquatic food webs: methodology and case study. Environ Pollut 158:1775–1782. doi:10.1016/j.envpol.2009.11.009

    Article  CAS  Google Scholar 

  • De Laender F, Van den Brink P, Janssen C (2011) Functional redundancy and food web functioning in linuron-exposed ecosystems. Environ Pollut 159:3009–3017

    Article  CAS  Google Scholar 

  • De Laender F, Melian CJ, Bindler R et al (2013) The contribution of intra- and interspecific tolerance variability to biodiversity changes along toxicity gradients. Ecol Lett. doi:10.1111/ele.12210

    Google Scholar 

  • Di Guardo A, Hermens JLM (2013) Challenges for exposure prediction in ecological risk assessment, integrated environmental assessment and management. Integr Environ Assess Manag 9:4–14

    Article  Google Scholar 

  • EFSA Panel on Plant Protection Products and their Residues (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J 11:3290

    Google Scholar 

  • European Chemicals Agency (2011). Guidance on information requirements and chemical safety assessment. Part A: Introduction to the guidance document

  • European Chemicals Agency (2013). Guidance on regulation (EU) no 528/2012 concerning the making available on the market and use of biocidal products (BPR)

  • European Medicines Agency (2004). Environmental impact assessment for veterinary medicinal products: phase II guidance

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233. doi:10.1016/s0048-9697(03)00141-4

    Article  CAS  Google Scholar 

  • Forbes VE, Calow P (2002) Species sensitivity distributions revisited: a critical appraisal. Hum Ecol Risk Assess 8:473–492

    Article  Google Scholar 

  • Forbes VE, Hommen U, Thorbek P et al (2009) Ecological models in support of regulatory risk assessments of pesticides: developing a strategy for the future. Integr Environ Assess Manag 5:167–172

    Article  CAS  Google Scholar 

  • Galic N, Baveco H, Hengeveld GM et al (2012) Simulating population recovery of an aquatic isopod: effects of timing of stress and landscape structure. Environ Pollut 163:91–99. doi:10.1016/j.envpol.2011.12.024

    Article  CAS  Google Scholar 

  • Gasic B, Moeckel C, MacLeod M et al (2009) Measuring and modeling short-term variability of PCBs in air and characterization of urban source strength in Zurich, Switzerland. Environ Sci Technol 43:769–776

    Article  CAS  Google Scholar 

  • Grimm V, Revilla E, Berger U et al (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 80(310):987–991. doi:10.1126/science.1116681

    Article  CAS  Google Scholar 

  • Grimm V, Ashauer R, Forbes V et al (2009) CREAM: a European project on mechanistic effect models for ecological risk assessment of chemicals. Environ Sci Pollut Res Int 16:614–617. doi:10.1007/s11356-009-0228-z

    Article  Google Scholar 

  • Heugens EHW, Hendriks AJ, Dekker T et al (2001) A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284

    Article  CAS  Google Scholar 

  • Hommen U, Baveco JM, Galic N, van den Brink PJ (2010) Potential application of ecological models in the European environmental risk assessment of chemicals I: review of protection goals in EU directives and regulations. Integr Environ Assess Manag 6:325–337

    Article  CAS  Google Scholar 

  • Jager T, Albert C, Preuss TG, Ashauer R (2011) General unified threshold model of survival—a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529–2540. doi:10.1021/es103092a

    Article  CAS  Google Scholar 

  • Martin BT, Jager T, Nisbet RM et al (2013) Extrapolating ecotoxicological effects from individuals to populations: a generic approach based on Dynamic Energy Budget theory and individual-based modeling. Ecotoxicology 22:574–583. doi:10.1007/s10646-013-1049-x

    Article  CAS  Google Scholar 

  • Morselli M, Ghirardello D, Semplice M, Di Guardo A (2011) Modeling short-term variability of semivolatile organic chemicals in air at a local scale: an integrated modeling approach. Environ Pollut 159:1406–1412. doi:10.1016/j.envpol.2010.12.034

    Article  CAS  Google Scholar 

  • SCHER, SCENIHR, SCCS (2013). Report on addressing the new challenges for risk assessment

  • Schmolke A, Thorbek P, DeAngelis DL, Grimm V (2010) Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol Evol 25:479–486. doi:10.1016/j.tree.2010.05.001

    Article  Google Scholar 

  • Traas TP, Janse JH, Van den Brink PJ et al (2004) A freshwater food web model for the combined effects of nutrients and insecticide stress and subsequent recovery. Environ Toxicol Chem 23:521–529

    Article  CAS  Google Scholar 

  • Van den Brink PJ (2008) Ecological risk assessment: from book-keeping to chemical stress ecology. Environ Sci Technol 42:8999–9004

    Article  CAS  Google Scholar 

  • Van den Brink PJ, Crum SJH, Gylstra R et al (2009) Effects of a herbicide-insecticide mixture in freshwater microcosms: risk assessment and ecological effect chain. Environ Pollut 157:237–249. doi:10.1016/j.envpol.2008.07.012

    Article  CAS  Google Scholar 

  • Van den Brink PJ, Baird DJ, Baveco JMH, Focks A (2013) The use of traits-based approaches and eco(toxico)logical models to advance the ecological risk assessment framework for chemicals. Integr Environ Assess Manag 9:47–57

    Article  CAS  Google Scholar 

  • Van Straalen N (2003) Ecotoxicology becomes stress ecology. Environ Sci Technol 37:324A–330A

    Article  Google Scholar 

  • Verbruggen EMJ, van den Brink PJ (2010). Review of recent literature concerning mixture toxicity of pesticides to aquatic organisms—report nr 601400001/2010. Bilthoven, the Netherlands

Download references

Acknowledgments

The Chimera project is financed by the Long Range Initiative of CEFIC (www.cefic-lri.org) (project code: LRI-ECO19)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. De Laender.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Laender, F., van den Brink, P.J., Janssen, C.R. et al. The ChimERA project: coupling mechanistic exposure and effect models into an integrated platform for ecological risk assessment. Environ Sci Pollut Res 21, 6263–6267 (2014). https://doi.org/10.1007/s11356-014-2605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2605-5

Keywords

Navigation