Skip to main content

Advertisement

Log in

Persistence, variance and toxic levels of organochlorine pesticides in fluvial sediments and the role of black carbon in their retention

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study assesses the persistence and variation of organochlorine pesticides (OCPs) and their regulation by total organic carbon (TOC) and black carbon (BC) in freshwater sediment. Sediment samples from the Yamuna River, a major tributary of the Ganges (one of the most populated and intensively used rivers in Asia), had high levels of Σ20OCPs (21.41 to 139.95 ng g−1). β-Hexachlorocyclohexane (β-HCH) was the most predominant component. ΣHCH and Σdichloro-diphenyl-trichloroethane (DDT) constituted ~86 % of Σ20OCPs. Isomer ratios indicated fresh usage of lindane, DDT and technical-grade HCH. Toxicological comparison with freshwater sediment quality guidelines showed γ-HCH and DDT at high levels of concern. β-HCH, α-HCH, endrin, heptachlor epoxide, dichloro-diphenyl-dichloroethane (DDD), dichloro-diphenyl-dichloroethylene and chlordane were above some of the guideline levels. TOC and BC had mean concentrations of 1.37 ± 0.51 % and 0.46 ± 0.23 mg g−1, respectively. BC constituted 1.25 to 10.56 % of TOC. We observed low to moderate correlations of BC with isomers of HCH, p,p′-DDT and methoxychlor while of TOC with Σ20OCPs, γ-HCH, endosulfan sulfate and methoxychlor. Principal component analysis enabled correlating and clustering of various OCPs, BC and TOC. OCP distribution was related with pH, electrical conductivity, soil moisture and finer fractions of sediment. OCPs with similarity in properties that determine their interactions with carbonaceous components of sediment clustered together. A number of factors may, thus, be involved in the regulation of interactive forces between BC and OCPs. BC in this study may be more important than TOC in the retention of some OCPs into fluvial sediments, thereby reducing their bioavailability. The finding is probably the first of its kind to report and emphasises the role of BC in the persistence of OCPs in fluvial sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accardi-Dey A, Gschwend PM (2002) Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ Sci Technol 36(1):21–29

    CAS  Google Scholar 

  • Ajmal M, Khan MA, Nomani AA (1985) Distribution of heavy metals in water and sediments of selected sites of Yamuna river (India). Environ Monit Assess 5(2):205–214

    CAS  Google Scholar 

  • Akhter MS, Chughtai AR, Smith DM (1985) The structure of hexane soot I: spectroscopic studies. Appl Spectrosc 39(1):143–153

    CAS  Google Scholar 

  • Ahmad S, Ajmal M, Nomani AA (1996) Organochlorines and polycyclic aromatic hydrocarbons in the sediments of Ganges River (India). Bull Environ Contam Toxicol 57(5):794–802

    Google Scholar 

  • Ball WP, Roberts PV (1991) Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium. Environ Sci Technol 25(7):1223–1237

    CAS  Google Scholar 

  • Barlas NE (1999) Determination of organochlorine pesticide residues in aquatic systems and organisms in upper Sakarya Basin, Türkiye. Bull Environ Contam Toxicol 62:278–285

    CAS  Google Scholar 

  • Barraclough D, Kearney T, Croxford A (2005) Bound residues: environmental solution or future problem? Environ Pollut 133(1):85–90

    CAS  Google Scholar 

  • Beulke S, Brown CD, Fryer CJ, van Beinum W (2004) Influence of kinetic sorption and diffusion on pesticide movement through aggregated soils. Chemosphere 57:481–490

    CAS  Google Scholar 

  • Bhattacharya B, Sarkar SK, Mukherjee N (2003) Organochlorine pesticide residues in sediments of a tropical mangrove estuary, India: implications for monitoring. Environ Int 29(5):587–592

    CAS  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini M, Bhattacharya AK et al (2008) A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India). Chemosphere 73(7):1129–1137

    CAS  Google Scholar 

  • Bollag JM, Myers C (1992) Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances. Sci Total Environ 117:357–366

    Google Scholar 

  • Bollag JM, Myers CJ, Minard RD (1992) Biological and chemical interactions of pesticides with soil organic matter. Sci Total Environ 123:205–217

    Google Scholar 

  • Brusseau ML, Rao PSC (1989) The influence of sorbate-organic matter interactions on sorption nonequillibrium. Chemosphere 18(9):1691–1706

    Google Scholar 

  • Bucheli TD, Gustafsson Ö (2000) Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ Sci Technol 34(24):5144–5151

    CAS  Google Scholar 

  • Buckley DR, Rockne KJ, Li A, Mills WJ (2004) Soot deposition in the Great Lakes: implications for semi-volatile hydrophobic organic pollutant deposition. Environ Sci Technol 38(6):1732–1739

    CAS  Google Scholar 

  • Calvert CC, Brown A, Brydson R (2005) Determination of the local chemistry of iron in inorganic and organic materials. J Electron Spectrosc Relat Phenom 143(2):173–187

    CAS  Google Scholar 

  • Castro TF, Yoshida T (1971) Degradation of organochlorine insecticides in flooded soils in the Philippines. J Agric Food Chem 19(6):1168–1170

    CAS  Google Scholar 

  • Castro TF, Yoshida T (1974) Effect of organic matter on the biodegradation of some organochlorine insecticides in submerged soils. Soil Sci Plant Nutr 20(4):363–370

    CAS  Google Scholar 

  • Chakraborty P, Zhang G, Li J, Xu Y, Liu X, Tanabe S et al (2010) Selected organochlorine pesticides in the atmosphere of major Indian cities: levels, regional versus local variations, and sources. Environ Sci Technol 44:8038–8043

    CAS  Google Scholar 

  • Chawla RP, Chopra SL (1967) Persistence of residues of DDT and BHC in normal and alkali soils. J Res Punjab Agric Univ 4:96

    CAS  Google Scholar 

  • Chefetz B, Xing B (2009) Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: a review. Environ Sci Technol 43(6):1680–1688

    CAS  Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610

    CAS  Google Scholar 

  • Chiou CT, Kile DE, Rutherford DW, Sheng G, Boyd SA (2000) Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity. Environ Sci Technol 34(7):1254–1258

    CAS  Google Scholar 

  • Cornejo J, Celis R, Pavlovic I, Ulibarri MA (2008) Interactions of pesticides with clays and layered double hydroxides: a review. Clay Miner 43(2):155–175

    CAS  Google Scholar 

  • Cornelissen G, Kukulska Z, Kalaitzidis S, Christanis K, Gustafsson Ö (2004) Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environ Sci Technol 38(13):3632–3640

    CAS  Google Scholar 

  • Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MT, Koelmans AA, van Noort PC (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39(18):6881–6895

    Google Scholar 

  • CPCB (Central Pollution Control Board) (2006) Water quality status of Yamuna River (1999–2005). New Delhi.http://www.cpcb.nic.in. Accessed 2 July 2013

  • Csomós E, Héberger K, Simon-Sarkadi L (2002) Principal component analysis of biogenic amines and polyphenols in Hungarian wines. J Agric Food Chem 50(13):3768–3774

    Google Scholar 

  • Curtis GP, Roberts PV, Reihard M (1986) A natural gradient experiment on solute transport in a sand aquifer: 4. Sorption of organic solutes and its influence on mobility. Water Resour Res 22(13):2059–2067

    CAS  Google Scholar 

  • Devi NL, Qi S, Chakraborty P, Zhang G, Yadav IC (2011) Passive air sampling of organochlorine pesticides in a northeastern state of India, Manipur. J Environ Sci 23(5):808–815

    CAS  Google Scholar 

  • Doong RA, Lin YT (2004) Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gaoping River, Taiwan. Water Res 38(7):1733–1744

    CAS  Google Scholar 

  • Doong RA, Peng CK, Sun YC, Liao PL (2002) Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan. Mar Pollut Bull 45(1):246–253

    CAS  Google Scholar 

  • Field LJ, MacDonald DD, Norton SB, Ingersoll CG, Severn CG, Smorong D, Lindskoog R (2002) Predicting amphipod toxicity from sediment chemistry using logistic regression models. Environ Toxicol and Chem 21(9):1993–2005

    Google Scholar 

  • Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370(1):190–206

    CAS  Google Scholar 

  • Fuhremann TW, Lichtenstein EP (1980) A comparative study of the persistence, movement, and metabolism of six carbon-14 insecticides in soils and plants. J Agric Food Chem 28(2):446–452

    CAS  Google Scholar 

  • Gagné JP, Gouteux B, Soubaneh YD, and Brindle JR (2011) Sorption of pesticides on natural geosorbents. In: Margarita Stoytcheva (Ed.) Pesticides—formulations, effects, fate. ISBN: 978-953-307-532-7, InTech. http://www.intechopen.com/books/pesticides-formulationseffects-fate/sorption-of-pesticides-on-natural-geosorbents. Accessed 2 July 2013

  • Gao JP, Maguhn J, Spitzauer P, Kettrup A (1998) Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: equilibrium assessments, effect of organic carbon content and pH. Water Res 32(5):1662–1672

    CAS  Google Scholar 

  • Gao F, Jia J, Wang X (2008) Occurrence and ordination of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in agricultural soils from Guangzhou, China. Arch Environ Contam Toxicol 54(2):155–166

    CAS  Google Scholar 

  • Gélinas Y, Prentice KM, Baldock JA, Hedges JI (2001) An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environ Sci Technol 35(17):3519–3525

    Google Scholar 

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108(1):3–14

    CAS  Google Scholar 

  • Goldberg ED (1985). Black carbon in the environment: properties and distribution. www.osti.gov. Accessed 12 January 2012

  • Gramatica P, Di Guardo A (2002) Screening of pesticides for environmental partitioning tendency. Chemosphere 47(9):947–956

    Google Scholar 

  • Gupta PK (2004) Pesticide exposure—Indian scene. Toxicology 198(1–3):83–90

    CAS  Google Scholar 

  • Gupta R (2010) The economic causes of crop residue burning in Western Indo-Gangetic plains. In conference held at Indian Statistical Institute, Delhi centre, p 1–26

  • Gustafsson Ö, Gschwend PM (1997) Soot as a strong partition medium for polycyclic aromatic hydrocarbons in aquatic systems. In: Molecular markers in environmental geochemistry, 365–381

  • Gustafsson Ö, Gschwend PM (1998) The flux of black carbon to surface sediments on the New England continental shelf. Geochim Cosmochim Acta 62(3):465–472

    CAS  Google Scholar 

  • Gustafsson O, Haghseta F, Chan C, MacFarlane J, Gschwend PM (1997) Quantification of the dilute sedimentary soot phase: implication for PAH speciation and bioavailability. Environ Sci Technol 31:203–209

    CAS  Google Scholar 

  • Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engström E et al (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323(5913):495–498

    CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation in soil. Org Geochem 35:823–830

    CAS  Google Scholar 

  • Hammes K, Schmidt MW, Smernik RJ, Currie LA, Ball WP, Nguyen TH et al (2007) Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob Biogeochem Cycles 21(3)

  • Héberger K, Görgényi M (1999) Principal component analysis of Kováts indices for carbonyl compounds in capillary gas chromatography. J Chromatogr A 845(1):21–31

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25(1):101–110

    Google Scholar 

  • Hu L, Zhang G, Zheng B, Qin Y, Lin T, Guo Z (2009) Occurrence and distribution of organochlorine pesticides (OCPs) in surface sediments of the Bohai Sea, China. Chemosphere 77(5):663–672

    CAS  Google Scholar 

  • Huang W, Peng PA, Yu Z, Fu J (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl Geochem 18(7):955–972

    CAS  Google Scholar 

  • Hung DQ, Thiemann W (2002) Contamination by selected chlorinated pesticides in surface waters in Hanoi, Vietnam. Chemosphere 47(4):357–367

    CAS  Google Scholar 

  • Hung CC, Gong GC, Chen HY, Hsieh HL, Santschi PH, Wade TL et al (2007) Relationships between pesticides and organic carbon fractions in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan. Environ Pollut 148:546–554

    CAS  Google Scholar 

  • Hung CC, Gong GC, Ko FC, Chen HY, Hsu ML, Wu JM et al (2010) Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan. Mar Pollut Bull 60(7):1010–1017

    CAS  Google Scholar 

  • Ingram RL (1971) Sieve analysis. In: Carver RE (ed), Procedures in sedimentary, petrology. 49–67

  • International POPs Elimination Project (IPEP) (2006) Assessment of the Lagos Lagoon for POPs sources, types and impacts. Friends Of The Environment (FOTE) Nigeria-Anglophone Africa. www.ipen.org. Accessed 12 January 2012

  • Iwata H, Tanabe S, Sakai N, Tatsukawa R (1993) Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ Sci Technol 27:1080–1098

    CAS  Google Scholar 

  • Jain CK (2004) Metal fractionation study on bed sediments of River Yamuna, India. Water Res 38(3):569–578

    CAS  Google Scholar 

  • Jain CK, Ali I (1997) Determination of pesticides in water, sediments and soils by gas chromatography. Int J Environ Anal Chem 68(1):83–101

    CAS  Google Scholar 

  • Jha PK, Vaithiyanathan P, Subramanian V (1993) Mineralogical characteristics of the sediments of a Himalayan river: Yamuna River—a tributary of the Ganges. Environ Geol 22(1):13–20

    CAS  Google Scholar 

  • Jiang YF, Wang XT, Jia Y, Wang F, Wu MH, Sheng GY et al (2009) Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. J Hazard Mater 170(2):989–997

    CAS  Google Scholar 

  • Jonker MTO, Koelmans AA (2002) Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot like materials in the aqueous environment: mechanistic considerations. Environ Sci Technol 36(36):3725–3734

    CAS  Google Scholar 

  • Jonker MT, Smedes F (2000) Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, The Netherlands. Environ Sci Technol 34(9):1620–1626

    CAS  Google Scholar 

  • Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. In: Reviews of environmental contamination and toxicology (pp. 149–217), Springer, New York

  • Keiluweit M, Kleber M (2009) Molecular-level interactions in soils and sediments: the role of aromatic π-systems. Environ Sci Technol 43(10):3421–3429

    CAS  Google Scholar 

  • Konert M, Vandenberghe JEF (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44(3):523–535

    CAS  Google Scholar 

  • Kroeger T (2010). Black carbon emissions in Asia: sources, impacts and abatement opportunities. contractor report prepared by International Resources Group for USAID, ECO-Asia Clean Development and Climate Program. Bangkok, Thailand

  • Kuhlbusch TAJ (1998) Black carbon in soils, sediments and ice cores. In: Meyers RA (ed) Encyclopedia of environmental analysis and remediation. Wiley, New York, pp 812–823

    Google Scholar 

  • Kumar B, Mishra M, Goel G, Gaur R, Singh SK, Prakash D et al (2011) Distribution and ecotoxicological risk assessment of persistent organic pollutants (POPs) in river sediments from Delhi India. Advanced Life Science Technology. www.iiste.org (Online) 1:1–8. Accessed 12 January 2012

  • Kumar B, Singh SK, Mishra M, Kumar S, Sharma CS (2012) Assessment of polychlorinated biphenyls and organochlorine pesticides in water samples from the Yamuna River. J Xenobiotics 2(1):e6

    Google Scholar 

  • Kumarasamy P, Govindaraj S, Vignesh S, Rajendran RB, James RA (2012) Anthropogenic nexus on organochlorine pesticide pollution: a case study with Tamiraparani river basin, South India. Environ Monit Assess 184(6):3861–3873

    CAS  Google Scholar 

  • Lee KT, Tanabe S, Koh CH (2001) Distribution of organochlorine pesticides in sediments from Kyeonggi Bay and nearby areas, Korea. Environ Pollut 114(2):207–213

    CAS  Google Scholar 

  • Lenheer JA, Aldrichs J (1971) A kinetic and equilibrium study of the adsorption of cabaryl and parathion upon soil organic matter surfaces. Soil Sci Soc Am Proc 35:700–705

    Google Scholar 

  • Li H, Sheng G, Teppen BJ, Johnston CT, Boyd SA (2003) Sorption and desorption of pesticides by clay minerals and humic acid-clay complexes. Soil Sci Soc Am J 67:122–131

    CAS  Google Scholar 

  • Li J, Zhang G, Qi S, Li X, Peng X (2006) Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China. Sci Total Environ 372(1):215-224

    Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ et al (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31(12):3341–3347

    CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39(1):20–31

    CAS  Google Scholar 

  • Maier-Bode H (1968) Properties, effect, residues and analytics of the insecticide endosulfan. In: Residue reviews/Rückstands-Berichte. Springer, US, pp 1–44

  • Malik A, Ojha P, Singh KP (2009) Levels and distribution of persistent organochlorine pesticide residues in water and sediments of Gomti River (India)—a tributary of the Ganges River. Environ Monit Assess 148(1–4):421–435

    CAS  Google Scholar 

  • Malik A, Verma P, Singh AK, Singh KP (2011) Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India. Environ Monit Assess 172(1–4):529–545

    Google Scholar 

  • Mao J, Fang X, Schmidt-Rohr K, Carmo AM, Hundal LS, Thompson ML (2007) Molecular-scale heterogeneity of humic acid in particle-size fractions of two Iowa soils. Geoderma 140(1):17–29

    CAS  Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92(1):201–213

    CAS  Google Scholar 

  • Mathur SP, Morley HV (1978) Incorporation of methoxychlor-14 C in model humic acids prepared from hydroquinone. Bull Environ Contam Toxicol 20(1):268–274

    CAS  Google Scholar 

  • Miller LL, Harris MO, Little SS, McClure PR, Sutton WR (2002) Toxicological profile for Methoxychlor. Agency for Toxic Substances and Disease Registry, Division of Toxicology/Toxicology Information Branch, U.S. Department of Health and Human Services, Atlanta, Georgia

  • Miranda J, Andrade E, Lopez-Suarez A, Ledesma R, Cahill TA, Wakabayashi PH (1996) A receptor model for atmospheric aerosols from a southwestern site in Mexico City. Atmos Environ 30(20):3471–3479

    CAS  Google Scholar 

  • Mirsal IA (2008) Soil pollution: origin, monitoring & remediation. Springer

  • Mishra K, Sharma RC, Kumar S (2012) Contamination levels and spatial distribution of organochlorine pesticides in soils from India. Ecotoxicol Environ Saf 76:215–225

    CAS  Google Scholar 

  • Mitra S, Bianchi TS, McKee BA, Sutula M (2002) Sources and seasonal discharge of fossil fuel-derived fluvial black carbon from the Mississippi River: implications for the global carbon cycle. Environ SciTechnol 36:2296

    CAS  Google Scholar 

  • Molbert S (2003) The hydrophobic interaction modeling hydrophobic interactions and aggregation of non-polar particles in aqueous solutions. Ph.D thesis. http://doc.rero.ch/record/494/files/Moelbert_these.pdf. Accessed 2 July 2013

  • Motosugi K, Soda K (1983) Microbial degradation of synthetic organochlorine compounds. Cell Mol Life Sci 39(11):1214–1220

    CAS  Google Scholar 

  • Muri G, Cermelj B, Faganeli J, Brancelj A (2002) Black carbon in Slovenian alpine lacustrine sediments. Chemosphere 46:1225

    CAS  Google Scholar 

  • Nam JJ, Gustafsson O, Kurt-Karakus P, Breivik K, Steinnes E, Jones KC (2008) Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environ Pollut 156(3):809–817

    Google Scholar 

  • Novakov T (1984) The role of soot and primary oxidants in atmospheric chemistry. Sci Total Environ 36:1–10

    CAS  Google Scholar 

  • Pan SY, Chang EE, Chiang PC (2012) CO2 Capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12(5):770–791

    CAS  Google Scholar 

  • Pandey P, Khillare PS, Kumar K (2011) Assessment of organochlorine pesticide residues in the surface sediments of River Yamuna in Delhi, India. J Environ Prot 2(5)

  • Pandit GG, Mohan Rao AM, Jha SK, Krishnamoorthy TM, Kale SP, Raghu K (2001) Monitoring of organochlorine pesticide residues in the Indian marine environment. Chemosphere 44:301–305

    CAS  Google Scholar 

  • Peng X, Wang J, Fan B, Luan Z (2009) Sorption of endrin to montmorillonite and kaolinite clays. J Hazard Mater 168(1):210–214

    CAS  Google Scholar 

  • Persson NJ, Gustafsson O, Bucheli TD, Ishaq R, Naes K, Broman D (2002) Soot-carbon influenced distribution of PCDD/Fs in the marine environment of the Grenlandsfjords, Norway. Environ Sci Technol 36:4968

    CAS  Google Scholar 

  • Pierce RH Jr, Olney CE, Felbeck GT Jr (1971) Pesticide adsorption in soils and sediments. Environ Lett 1(2):157–172

    CAS  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Tech 30:1–11

    Google Scholar 

  • Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3(4):397–420

    CAS  Google Scholar 

  • Qiu Y, Xiao X, Cheng H, Zhou Z, Sheng GD (2009) Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter. Environ Sci Technol 43(13):4973–4978

    CAS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221–227

    CAS  Google Scholar 

  • Rashid A (2011) Investigations on organochlorine pesticide residues in soil from cotton growing areas of Pakistan. PhD Thesis, Quaid-i-Azam University, Islamabad. Accessed 2 July 2013

  • Rawat M, Moturi MCZ, Subramanian V (2003) Inventory compilation and distribution of heavy metals in wastewater from small-scale industrial areas of Delhi, India. J Environ Monit 5(6):906–912

    CAS  Google Scholar 

  • Ray S, Khillare PS, Kim KH, Brown RJ (2012) Distribution, sources, and association of polycyclic aromatic hydrocarbons, black carbon, and total organic carbon in size-segregated soil samples along a background–urban–rural transect. Environ Eng Sci 29(11):1008–1019

    CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108(1):103–112

    CAS  Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ Geol 39(9):1001–1014

    CAS  Google Scholar 

  • Renaud FG, Brown CD, Fryer CJ, Walker A (2004) A lysimeter experiment to investigate temporal changes in the availability of pesticide residues for leaching. Environ Pollut 131(1):81–91

    CAS  Google Scholar 

  • Ridal JJ, Kerman B, Durham L, Fox ME (1996) Seasonality of air-water fluxes of hexachlorocyclohexanes in Lake Ontario. Environ Sci Technol 30(3):852–858

    CAS  Google Scholar 

  • Sarkar SK, Binelli A, Riva C, Parolini M, Chatterjee M, Bhattacharya AK et al (2008) Organochlorine pesticide residues in sediment cores of Sunderban wetland, northeastern part of Bay of Bengal, India, and their ecotoxicological significance. Arch Environ Contam Toxicol 55(3):358–371

    CAS  Google Scholar 

  • Schmidt MW, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cycles 14(3):777–793

    CAS  Google Scholar 

  • Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Chang 2(3):207–247

    CAS  Google Scholar 

  • Senesi N (1992) Binding mechanisms of pesticides to soil humic substances. Sci Total Environ 123:63–76

    Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1980) Behaviour of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Res 14(8):1095–1100

    CAS  Google Scholar 

  • Singh RP (2001) Comparison of organochlorine pesticide levels in soil and groundwater of Agra, India. Bull Environ Contam Toxicol 67:126–132

    CAS  Google Scholar 

  • Singh AP, Ghosh SK (2003) Conceptual modeling and management of water quality in a river basin. In: Ramanathan AL, Ramesh (ed), Recent trends in hydrogeochemistry, Capital Books, New Delhi, pp 207–220

  • Singh NC, Dasgupta TP, Roberts EV, Mansingh A (1991) Dynamics of pesticides in tropical conditions. 1. Kinetic studies of volatilization, hydrolysis, and photolysis of dieldrin and alpha-and. beta-endosulfan. J Agric Food Chem 39(3):575–579

    CAS  Google Scholar 

  • Singh KP, Malik A, Mohan D, Takroo R (2005) Distribution of persistent organochlorine pesticide residues in Gomti River, India. Bull Environ Contam Toxicol 74(1):146–154

    Google Scholar 

  • Singh KP, Malik A, Sinha S (2007) Persistent organochlorine pesticide residues in soil and surface water of northern Indo-Gangetic alluvial plains. Environ Monit Assess 125(1–3):147–155

    CAS  Google Scholar 

  • Škrbić B, Đurišić-Mladenović N (2007) Principal component analysis for soil contamination with organochlorine compounds. Chemosphere 68(11):2144–2152

    Google Scholar 

  • Song J, Peng P, Huang W (2002) Black carbon and kerogen in soils and sediments: 1. Quantification and characterization. Environ Sci Technol 36(18):3960–3967

    CAS  Google Scholar 

  • Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298(1):147–161

    CAS  Google Scholar 

  • Srinivas DSRK (1999) Spatial patterns of air pollution in Delhi, India. J Environ Prot 19:172–180

    Google Scholar 

  • Subramanian V, Madhavan N, Saxena R, Lundin LC (2003) Nature of distribution of mercury in the sediments of the River Yamuna (tributary of the Ganges), India. J Environ Monit 5(3):427–434

    CAS  Google Scholar 

  • Suddaby L (2012) Investigation into irreversible sorption of pesticides to soil. Ph.D thesis

  • Suzuki M, Yamato Y, Watanabe T (1975) Persistence of BHC (1, 2, 3, 4, 5, 6-exachlorocyclohexane) and dieldrin residues in field soils. Bull Environ Contam Toxicol 14(5):520–529

    CAS  Google Scholar 

  • Tan L, He M, Men B, Lin C (2009) Distribution and sources of organochlorine pesticides in water and sediments from Daliao River estuary of Liaodong Bay, Bohai Sea (China). Estuar Coast Shelf Sci 84(1):119–127

    CAS  Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. ISBN 90-247-3143-7, Junk Publishers, Dordrecht

  • Tremblay L, Gagné JP (2009) Organic matter distribution and reactivity in the waters of a large estuarine system. Mar Chem 116(1):1–12

    CAS  Google Scholar 

  • Tukura BW, Kagbu JA, Gimba CE (2007) Effects of pH and total organic carbon (TOC) on the distribution of trace metals in Kubanni dam sediments, Zaria, Nigeria. Science World 2(3)

  • Tysklind M, Lundgren K, Rappe C, Eriksson L, Jonsson J, Sjoestroem M, Ahlborg UG (1992) Multivariate characterization and modeling of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 26(5):1023–1030

    CAS  Google Scholar 

  • UNEP (2003) Global report on regionally based assessment of persistent toxic substances. UNEP Chemicals, Geneva, Switzerland

    Google Scholar 

  • USEPA (1995) Test methods for evaluating solid waste, method 3540 Soxhlet extraction. US GPO, Washington, DC

    Google Scholar 

  • USEPA (US Environmental Protection Agency) (1980) Water quality criteria documents, availability. Fed Regist 45(231):79318–79379

    Google Scholar 

  • Vrind BA, Ten Hulscher TE, van Noort P (2006) Kinetics of adsorption and desorption of some organochlorine compounds on black carbon in a sediment. Environ Toxicol and Chem 25(4):942–946

    Google Scholar 

  • Watson JG, Chow JC, Chen LWA (2005) Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual Res 5(1):65–102

    CAS  Google Scholar 

  • Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields—a review. J Environ Qual 7(4):459–472

    CAS  Google Scholar 

  • Weber WJ Jr, DiGiano FA (1996) Process dynamics in environmental systems. Wiley, New York

    Google Scholar 

  • Weber WJ Jr, McGinley PM, Katz LE (1992) A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ Sci Technol 26(10):1955–1962

    CAS  Google Scholar 

  • Weber WJ Jr, LeBoeuf EJ, Young TM, Huang W (2001) Contaminant interactions with geosorbent organic matter: insights drawn from polymer sciences. Water Res 35:853–868

    Google Scholar 

  • Willet KL, Ulrich EM, Hites HA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32(15):2197–2207

    Google Scholar 

  • Wisconsin’s Department of Natural Resources (WDNR) (2003) Concensus based sediment quality guidelines. Recommendations for use and application. Department of Interior, Washington D.C. 20240, pp 17

  • Xia G, Ball WP (1999) Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent. Environ Sci Technol 33:262–269

    CAS  Google Scholar 

  • Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol 31(3):792–799

    CAS  Google Scholar 

  • Young TM, Weber WJ Jr (1995) A distributed reactivity model for sorption by soils and sediments: 3. Effects of diagenetic processes on sorption energetics. Environ Sci Technol 29:92–97

    CAS  Google Scholar 

  • Yuan D, Yang D, Wade TL, Qian Y (2001) Status of persistent organic pollutants in the sediment from several estuaries in China. Environ Pollut 114(1):101–111

    CAS  Google Scholar 

  • Zhang L, Dong L, Shi S, Zhou L, Zhang T, Huang Y (2009) Organochlorine pesticides contamination in surface soils from two pesticide factories in Southeast China. Chemosphere 77(5):628–633

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors would like to convey gratitude to the Indian Council of Medical Research, New Delhi, for funding the research as Junior Research Fellowship to the research fellow. The analytical facilities provided by the Advanced Instrumentation Research Facility and Central Instrumentation Facility (SES), JNU, New Delhi are also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AL. Ramanathan.

Additional information

Responsible editor: Leif Kronberg

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Physico-chemical properties of organochlorine pesticides (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parween, M., Ramanathan, A., Khillare, P.S. et al. Persistence, variance and toxic levels of organochlorine pesticides in fluvial sediments and the role of black carbon in their retention. Environ Sci Pollut Res 21, 6525–6546 (2014). https://doi.org/10.1007/s11356-014-2531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2531-6

Keywords

Navigation