Skip to main content

Advertisement

Log in

Manganese in the urban atmosphere: identifying anomalous concentrations and sources

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

Industrial emissions can raise urban background levels of inhalable Mn particles in an order of magnitude above normal, eclipsing the contribution made by natural sources and traffic.

Methods

The source of such emissions can be identified using a multidisciplinary approach which integrates ICP-MS chemical analyses of PM10 and PM2.5 samples with positive matrix factorization source apportionment modelling, scanning electron microscopy and meteorological data.

Results

We apply this methodology to data from Santander (N Spain), where morning Mn-bearing industrial contamination sourcing from the SW is returned towards the city by afternoon NE sea breezes. This wind direction reversal carries the industrial pollution plume inland, detectably raising urban background levels of MnPM10 in the town of Torrelavega 20 km away. Industrially sourced daily urban background Mn levels at Santander reach >1,000 ng/m3, average >150 ng/m3.

Conclusions

We demonstrate the anomalous nature of such concentrations by comparing them with >2,500 PM10 chemical analyses of ambient PM10 from other sites in Spain which show how current background Mn levels in urban air typically average only 10 ng/m3, rising to 20–25 ng/m3 in city traffic sites. Daily levels of atmospheric Mn PM10 only rarely exceed 50 ng/m3, usually during desert dust intrusions which, in extreme cases (such as Canary Islands “calima” events from Africa) can produce Mn concentrations of 100–125 ng/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alastuey A, Moreno N, Querol X, Viana M, Artiñano B, Luaces JA, Basora J, Guerra A (2007) Contribution of harbour activities to levels of particulate matter in a harbour area: Hada project-Tarragona Spain. Atmos Environ 41:6366–6378

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK (2009) Quantifying road dust resuspension in urban environment by Multilinear engine: a comparison with PMF2. Atmos Environ 43:2770–2780

    Article  CAS  Google Scholar 

  • ATSDR (2008) Agency for Toxic Substances and Disease Registry. Available at: http://www.atsdr.cdc.gov/. Accessed Aug 2009

  • Bouchard M, Mergler D, Baldwin ME, Panisset M (2008) Manganese cumulative exposure and symptoms: a follow-up study of alloy workers. Neurotoxicity 29:577–583

    Article  CAS  Google Scholar 

  • Bowler RM, Roels HA, Nakagawa S, Drezgic M, Diamond E, Park R, Koller W, Bowler R, Mergler D, Bouchard M, Smith D, Gwiazda R, Doty R (2007) Dose-effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med 64:167–177

    Article  CAS  Google Scholar 

  • CIMA (Government of Cantabria) (2006) Evaluation of the influence of wind direction on manganese content of PM10 collected in Alto de Maliaño. Internal report C-098/2004.4

  • Chillrud S, Epstein D, Ross JM, Sax SN, Pederson D, Spengler JD, Kinney PL (2004) Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City´s subway system. Environ Sci Technol 38:732–737

    Article  CAS  Google Scholar 

  • Crump KS (2000) Manganese exposure in Toronto during use of the gasoline additive, methylcyclopentadienyl manganese tricarbonyl. J Expo Anal Env Epid 10:227–239

    Article  CAS  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single- Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. Available at: (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory. Accessed Aug 2009

  • Escudero M, Querol X, Pey J, Alastuey A, Pérez N, Ferreira F, Alonso S, Rodríguez S, Cuevas E (2007) A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos Environ 41:5516–5524

    Article  CAS  Google Scholar 

  • IPCS (1981) International Programme on Chemical Safety: Environmental Health Criteria 17, Manganese. Available at: http://www.inchem.org/documents/ehc/ehc/ehc017.htm. Accessed Aug 2009

  • IPCS (1999) International Programme On Chemical Safety: Concise International Chemical Assessment Document 12. Manganese and its compounds. Available at: http://www.inchem.org/documents/cicads/cicads/cicad12.htm#PartNumber:2. Accessed Aug 2009

  • Itakura T, Tajima T (1972) A survey of environmental pollution by manganese dust from a ferro-manganese plant in Kanazawa. Ishikawa Prefecture, Institute for Hygiene and Environmental Pollution, Annual Report, 9:40–50 (in Japanese)

  • Ledoux F, Laversin H, Courcot D, Courcot L, Zhilinskaya EA, Puskaric E, Aboukais A (2006) Characterisation of iron and manganese species in atmospheric aerosols from anthropogenic sources. Atmos Res 82:622–632

    Article  CAS  Google Scholar 

  • Lucchini RG, Albvini E, Benedetti L, Borghesi S, Coccaglio R, Malara EC, Parrinello G, Garattini S, Resola S, Allessio L (2007) High prevalence of Parkinsonian disorders associated to Manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med 50:788–800

    Article  CAS  Google Scholar 

  • Moreno N, Alastuey A, Querol X, Artiñano B, Guerra A, Luaces JA, Lorente A, Basora J (2007) Characterisation of dust material emitted during harbour operations (HADA Project). Atmos Environ 41:6331–6343

    Article  CAS  Google Scholar 

  • Paatero P, Hopke PK (2003) Discarding or downweighting high-noise variables in factor analytic models. Anal Chim Acta 490:277–289

    Article  CAS  Google Scholar 

  • Paatero P (2004) User’s Guide for Positive Matrix Factorization Programs PMF2 and PMF3, Parts 1 and 2. University of Helsinki, Helsinki, Finland

    Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Paatero P, Hopke PK, Begum BA, Biswas SK (2005) A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution. Atmos Environ 39:193–201

    Article  CAS  Google Scholar 

  • Pandolfi M, Viana M, Minguillón MC, Querol X, Alastuey A, Amato F, Celades I, Escrig A, Monfort E (2008) Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: comparison of source apportionment results. Atmos Environ 42:9007–9017

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Rodrıguez S, Plana F, Mantilla E, Ruiz CR (2001) Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos Environ 35:845–858

    Article  CAS  Google Scholar 

  • Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Moreno T, Viana M, Castillo S, Pey J, Rodríguez S, Artiñano B, Salvador P, Sánchez M, Garcia Dos Santos S, Herce Garraleta MD, Fernandez-Patier R, Moreno-Grau S, Minguillón MC, Monfort E, Sanz MJ, Palomo-Marín R, Pinilla-Gil E, Cuevas E (2008) Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos Environ 42:3964–3979

    Article  CAS  Google Scholar 

  • Ressler T, Wong J, Roos J, Smith IL (2000) Quantitative speciation of Mn-bearing particulates emitted from autos burning (Methycyclopentadienyl) manganese tricarbonyl-added gasolines using XANES spectroscopy. Environ Sci Technol 34:950–958

    Article  CAS  Google Scholar 

  • Rodier J (1955) Manganese poisoning in Moroccan miners. Brit J Ind Med 12:21–35

    CAS  Google Scholar 

  • Rodrıguez S, Querol X, Alastuey A, Mantilla E (2002) Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. Atmos Environ 36:3101–3112

    Article  Google Scholar 

  • Rodríguez-Agudelo Y, Riojas-Rodríguez H, Ríos C, Rosas I, Sabido Pedraza E, Miranda J, Siebe C, Texcalac JL, Santos-Burgoa C (2006) Motor alterations associated with exposure to manganese in the environment in Mexico. Sci Tot Environ 368:542–556

    Article  Google Scholar 

  • Sabnis CV, Yeannawar PK, Pampattiwar VL, Deshpande JM (1966) An environmental study of a ferro-manganese alloy concern. Indian J Ind Med 11–12:207–222

    Google Scholar 

  • Saric M, Markicevic A, Hrustic O (1977) Occupational exposure to manganese. Brit J Ind Med 34:114–118

    CAS  Google Scholar 

  • Schuler P, Oyanguren H, Maturana V, Valenzuela A, Cruz E, Plaza V, Schmidt E, Haddad R (1957) Manganese poisoning. Environmental and medical study at a Chilean mine. Ind Med Surg 26:167–173

    CAS  Google Scholar 

  • Suzuki Y, Nishiyama K, Suzuki Y, Kajimoto M, Fujii N, Nishidono N, Kondo T, Sokabe E, Matsuhashi M, Ueno E, Yamada Y (1973) The effects of chronic manganese exposure on ferromanganese workers (Part I). Shikoku Acta Med 29:412–424 (in Japanese)

    CAS  Google Scholar 

  • Turpin BJ, Saxena P, Andrews E (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos Environ 34:2983–3013

    Article  CAS  Google Scholar 

  • Viana M (2003) Niveles, composición y origen del material particulado atmosférico en los sectores norte y este de la Penínnsula Ibérica y Canarias. Ph.D. Thesis. Universitat de Barcelona, Barcelona, Spain

  • Viana M, Pandolfi M, Minguillón MC, Querol X, Alastuey A, Monfort E, Celades I (2008) Inter-comparison of receptor models for PM source apportionment: case study in an industrial area. Atmos Environ 42:3820–3832

    Article  CAS  Google Scholar 

  • Whitlock CM, Amuso SJ, Bittenbender JB (1966) Chronic neurological disease in two manganese steel workers. Am Ind Hyg Assoc J 27:454–459

    Google Scholar 

  • WHO (1987) Manganese. In: Air quality guidelines for Europe. Copenhagen, World Health Organization Regional Office for Europe, pp. 262–271 (European Series No. 23)

  • WHO (2001) Air quality guidelines 2nd edition. Copenhagen, Denmark. Available at: http://www.euro.who.int/document/aiq/6_8manganese.pdf

  • Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace metals at the South Pole. Science 183:198–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been financially supported by the Spanish Ministry of the Environment and the Plan Nacional de I + D from the Ministry of Education and Science (MMA 2006_EG0X2006-M-PARTICULADO-M1, GRACCIE: CONSOLIDER- INGENIO 2010 nº 22422). The authors are indebted to Mª Luisa Pérez García, José Ramón Lomba and personnel of the Centro de Investigación del Medio Ambiente CIMA, Consejería de Medio Ambiente, of the Cantabrian Government for their collaboration with this study and the high quality of the monitoring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Moreno.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, T., Pandolfi, M., Querol, X. et al. Manganese in the urban atmosphere: identifying anomalous concentrations and sources. Environ Sci Pollut Res 18, 173–183 (2011). https://doi.org/10.1007/s11356-010-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0353-8

Keywords

Navigation