Skip to main content
Log in

Dynamic disturbance regime approach in river restoration: concept development and application

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

In recent years, numerous restoration measures have been initiated to ecologically and morphologically improve rivers based on self-dynamic development. A wealth of monitoring studies has been implemented to evaluate these restoration measures. Such restored river systems, however, must develop for years to decades to achieve a (dynamic) equilibrium, with an equally lengthy period before serious evaluation is possible. Thus, modelling approaches that accurately quantify the underlying processes and their manifold interactions are useful tools for river management. This paper presents a new conceptual approach for analyzing the interrelationship among plant succession, morphology, and hydrological impacts. Based on the dynamic disturbance regime approach, the model concept addresses interdisciplinary processes in river morphodynamics. The development of the concept is outlined, and the approach is applied considering three different process types: (1) metastable, (2) oscillation, and (3) acyclic. All three describe the relationship between vegetation succession/retrogression and the impact of disturbances. We show that addressing these three different process types helps the prediction of intermediate and long-term river system development by going beyond steady-state monitoring results to consider future dynamic developments. Moreover, classifying these process types and comparing them with reference (natural) conditions helps evaluation of the river system and subsequently definition of management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackers P, White WR (1973) Sediment transport: new approach and analysis. J Hydraul Div ASCE 99(HY11):2040–2060

    Google Scholar 

  • Andrews ED (1984) Bed material entrainment and the hydraulic geometry of gravel-bed rivers in Colorado. Geol Soc Am Bull 95(3):371–378

    Article  Google Scholar 

  • ASCE Task Committee (1998) River width adjustment. I: processes and mechanics. J Hydraul Eng ASCE 124(9):881–902

    Article  Google Scholar 

  • Baker VR, Costa JE (1987) Flood power. In: Mayer L, Nash D (eds) Catastrophic flooding. Allen and Unwin, Winchester, pp 1–21

    Google Scholar 

  • Baker VR, Ritter DF (1975) Competence of rivers to transport coarse bedload material. Geol Soc Am Bull 86:975–978

    Article  Google Scholar 

  • Böhmer HJ (1999) Vegetationsdynamik im Hochgebirge unter dem Einfluss natürlicher Störungen. In: Dissertationes Botanicae (Berlin/Stuttgart) Band 311, p 180

  • Bravard JP, Landon N, Peiry JL, Piégay H (1999) Principles of engineering geomorphology for managing channel erosion and bedload transport, examples from French rivers. Geomorphology 31(1/4):291–311. doi:10.1016/S0169-555X(99)00091-4

    Article  Google Scholar 

  • Bray DI (1982) Regime equations in gravel-bed rivers. In: Hey RD, Bathurst JC, Thorne CR (eds) Gravel-bed rivers. Wiley, Chicheser, pp 517–552

    Google Scholar 

  • Brierley GJ, Fryirs KA (2005) Geomorphology and river management: applications of the River Styles framework. Blackwell Publications, Oxford, p 398

    Google Scholar 

  • Buffington J, Tonina D (2009) Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geogr Compass 3. doi:10.1111/j.1749-8198.2009.00225

  • Chang HH (1980) Geometry of gravel streams. J Hydraul Div ASCE 106(HY9):1443–1456

    Google Scholar 

  • Chang HH (1988a) Fluvial processes in river engineering. Wiley, New York

    Google Scholar 

  • Chang HH (1988b) Introduction to FLUVIAl-12 mathematical model for erodible channels. In: Shou-shan F (ed) Twelve selected computer stream sedimentation models developed in the United States. Federal Energy Regulatory Commission, Washington, DC

  • Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84:56–86

    Article  Google Scholar 

  • Cowan WI (1956) Estimating hydraulic roughness coefficients. Agric Eng 37:473–475

    Google Scholar 

  • Dapporto S, Rinaldi M, Casagli N (2001) Failure mechanisms and pore water pressure conditions: analysis of a riverbank along the Arno River (Central Italy). Eng Geol 61(4):221–242

    Article  Google Scholar 

  • Darby SE, Rinaldi M, Pistolesi I (1997) Effects of flexible riparian vegetation growth on discharge capacity. In: Holly FM, Alsaffar A (eds) Environmental and coastal hydraulics. ASCE, New York, pp 394–399

    Google Scholar 

  • Denslow JS (1980) Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46:18–21

    Article  Google Scholar 

  • Eaton BC (2006) Bank stability analysis for regime models of vegetated gravel bed rivers. Earth Surf Process Landf. doi:10.1002/esp.1364

    Google Scholar 

  • Eaton BC, Church M, Millar RG (2004) Rational regime model of alluvial channel morphology and response. Earth Surf Process Landf 29:511–529

    Article  Google Scholar 

  • Edwards P, Kollmann J, Gurnell A, Petts G, Tockner K, Ward J (1999) A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Neth Wetl Ecol Manag 7(3):141–153

    Article  Google Scholar 

  • Egger G, Aigner S, Angermann K (2007) Vegetationsdynamik einer alpinen Wildflusslandschaft und Auswirkungen von Renaturierungsmaßnahmen auf das Störungsregime, dargestellt am Beispiel des Tiroler Lechs. In: Verein zum Schutz der Bergwelt e.V.: Jahrbuch Verein zum Schutz der Bergwelt (München) 72:5–54

  • Egger G, Politti E, Garófano-Gómez V, Blamauer B, Ferreira MT, Rivaes R, Benjankar R, Habersack H (2012): Embodying interactions of riparian vegetation and fluvial processes into a dynamic floodplain model: concepts and applications. In: Maddock I, Harby A, Kemp P, Wood P (eds) Ecohydraulics: an integrated approach. Wiley, New York (in print)

  • Forman R, Godron M (1986) Landscape ecology. Wiley, Canada, p 619

    Google Scholar 

  • Formann E, Habersack HM, Schober S (2007) Morphodynamic river processes and techniques for assessment of channel evolution in Alpine gravel bed rivers. Geomorphology 90:340–355. doi:10.1016/j.geomorph.2006.10.029

    Article  Google Scholar 

  • Glenn-Lewin DC, Van der Maarel E (1992) Patterns and processes of vegetation dynamics. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant succession. Chapman & Hall, London, pp 11–59

    Google Scholar 

  • Günter A (1971) Die kritische mittlere Sohlenschubspannung bei Geschiebemischungen unter Berücksichtigung der Deckschichtbildung und der turbulenzbedingten Sohlschubspannungsschwankungen. Dissertation Nr. 4649 am Institut für Hydromechanik und Wasserwirtschaft an der ETH Zürich, Zürich

  • Gurnell AM, Gregory KJ (1995) Interactions between semi-natural vegetation and hydrogeomorphological processes. Geomorphology 13:49–69

    Article  Google Scholar 

  • Gurnell AM, Van Oosterhout MP, Vlieger DE, Goodson JM (2006) Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Res Appl 22(6):667–680. Wiley. doi:10.1002/rra.929

    Google Scholar 

  • Habersack H, Nachtnebel HP (1994) Analysis of sediment transport developments in relation to human impacts. In: proceedings of an international symposium variability in stream erosion and sediment transport. IAHS Publ. No 224, Canberra, Australia

  • Habersack H, Piégay H (2008) River restoration in the Alps and their surroundings: past experience and future challenges. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-bed rivers VI: from process understanding to river restoration, pp 703–737. doi:10.1016/S0928-2025(07)11161-5

  • Habersack H, Schober St, Formann E, Beheshti K, Daniczek M (2003) Flussmorphologisches Monitoring im Rahmen des LIFE—Projektes “Obere Drau”. In: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: 20. Flussbautagung LIFE—Symposium, 8–11 Sept 2003, Wien, pp 15–45

  • Hey RD (1997) Stable river morphology. In: Thorne CR, Hey RD, Newson MD (eds) Applied fluvial geomorphology for river engineering and management. Wiley, New York, pp 223–236

    Google Scholar 

  • Huang HQ, Nanson GC (1997) Vegetation and channel variation; a case study of four small streams in southeastern Australia. Geomorphology 18:237–249

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity—the coexistence of species on changing landscapes. Cambridge University Press, Cambridge, p 681

    Google Scholar 

  • Jia Y, Wang S (2001) CCHE2D—two dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed. Technical Report No NCCHE–TR–2001-1. School of Engineering, University of Mississippi, National Center for Computational Hydroscience and Engineering

  • Julien PY, Wargadalam J (1995) Alluvial channel geometry: theory and applications. J Hydraul Eng ASCE 121(4):312–325

    Article  Google Scholar 

  • Jungwirth M, Moog O, Muhar S (1993) Effects of river bed restructuring on fish and benthos of a fifth order stream, Melk, Austria. Regul River Res Manag 8:195–204

    Article  Google Scholar 

  • Jungwirth M, Muhar S, Schmutz S (2002) Re-establishing and assessing ecological integrity in riverine landscapes. Freshw Biol 47:867–887. doi:10.1046/j.1365-2427.2002.00914.x

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river–floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Kalliola R, Puhakka M (1988) River dynamics and vegetation mosaicism: a case study of the River Kamajohka, northernmost. Finl J Biogeogr 15:703–719

    Article  Google Scholar 

  • Komar PD, Carling PA (1991) Grain sorting in gravel-bed streams and the choice of particle sizes for flow competence evaluations. Sedimentology 35:681–695

    Article  Google Scholar 

  • Kondolf GM (2006) River restoration and meanders. Ecol Soc 11:42–60

    Google Scholar 

  • Kondolf GM, Downs PW (1996) Catchment approach to planning channel restoration. In: Brookes A, Shields FD Jr (eds) River channel restoration: guiding principles for sustainable projects. Wiley, Chichester, pp 129–148

    Google Scholar 

  • Kondolf GM, Piégay H, Landon N (2007) Changes in the riparian zone of the lower Eygues River, France, since 1830. Landsc Ecol 22(3):367–384. doi:10.1007/s10980-006-9033-y

    Article  Google Scholar 

  • Kromp-Kolb H, Schwarzl I (ed.) (2004) StartClim2004—Heat and drought and their impacts in Austria. Final Report. Institute of Meteorology. Department of Water, Atmosphere, Environment. BOKU, University of Natural Resources and Applied Life Sciences, Vienna

  • Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. WH Freeman & Company, San Francisco

    Google Scholar 

  • Liébault F, Piégay H (2001) Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology 36(3/4):167–186. doi:10.1016/S0169-555X(00)00044-1

    Article  Google Scholar 

  • Mayr P (2003) Weiterentwicklung von Messtechnik und Methodiken im Wasserbau. Dissertation, Universität für Bodenkultur in Wien, IWHW

  • Meyer-Peter E, Müller R (1948) Formulas for bed-load transport, International Association of Hydraulic Research, 2nd Meeting. Stockholm, Sweden

    Google Scholar 

  • Millar RG, Quick MC (1993) Effect of bank stability on geometry of gravel rivers. J Hydraul Eng ASCE 119(12):1343–1363

    Article  Google Scholar 

  • Millar RG, Quick MC (1998) Stable width and depth of gravel-bed rivers with cohesive banks. J Hydraul Eng ASCE 124(10):1005–1013

    Article  Google Scholar 

  • Molinas A, Yang CT (1986) Computer program user’s manual for GSTARS. Repl to US Dept of the Interior, Bureau of Reclamation Engineering and Research Center. Colorado State University, Ft Collins

    Google Scholar 

  • Mucina L, Grabherr G, Ellmauer T (1993) Die Pflanzengesellschaften Österreichs—Natürliche waldfreie Vegetation, Teil 2. Gustav Fischer Verlag, Stuttgart New York

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Muhar S, Schwarz M, Schmutz S, Jungwirth M (2000) Identification of rivers with high and good habitat quality: methodological approach and applications in Austria. In: Jungwirth M, Muhar S, Schmutz S (eds) Assessing the ecological integrity of running waters. Kluwer Academic Publishers, London, pp 343–358

    Chapter  Google Scholar 

  • Muhar S, Poppe M, Egger G, Schmutz S, Melcher A (2004) Flusslandschaften Österreichs. Ausweisung von Flusslandschaftstypen anhand des Naturraums, der Fischfauna und der Auenvegetation. Forschungsprogramm Kulturlandschaft. Bundesministerium für Bildung, Wissenschaft und Kultur (Vienna), Band 16, p. 181

  • Müller N (1995) River dynamics and floodplain vegetation and their alterations due to human impact. Arch Hydrobiol Suppl 101 Large Rivers 9:477–512

    Google Scholar 

  • Parker G (1996) Gravel-bed channel stability. In: Nakato Ettema (ed) Issues and directions in hydraulics. Balkema, Rotterdam, pp 115–133

    Google Scholar 

  • Pizzuto JE (1990) Numerical simulation of gravel bed widening. Water Resour Res 26:1971–1980

    Article  Google Scholar 

  • Plachter H (1998) Die Auen alpiner Wildflüsse als Modelle störungsgeprägter ökologischer Systeme. In: Finck P, Klein M, Riecken U, Schröder E (ed) Schutz und Förderung dynamischer Prozesse in der Landschaft. Schriftenreihe für Landschaftspflege und Naturschutz 56. Bundesamt für Naturschutz. Bonn-Bad Godesberg, Bonn, p 21

  • Rinaldi M (2003) Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surf Process Landf 28:589–608. Wiley InterScience (www.interscience.wiley.com). doi:10.1002/esp.464

  • Rinaldi M, Darby SE (2005) Advances in modelling river bank erosion processes. 6th Gravel Bed River Workshop, Austria

  • Rodi W (1980) Turbulence models and their application in hydraulics. Int Assoc Hydraul Res (IAHR), Delft

  • Rohde S, Schütz M, Kienast F, Englmaier P (2005) River widening: an approach to restoring riparian habitats and plant species. River Res Appl 23:303–322. Wiley InterScience (www.interscience.wiley.com). doi:10.1002/rra.981

  • Roni P, Hason K, Beechie T (2005) Habitat rehabilitation for inland fisheries. Global review of effectiveness and guidance for rehabilitation of freshwater ecosystems. FAO Fisheries Technical Paper. No 484, Rome

  • Schober S (2004) Raum-zeitliche Analyse flussmorphologischer Fragestellungen in alpinen Einzugsgebieten. Doctoral thesis, BOKU, Wien

  • Shields A (1936) Anwendung der Änlichkeitsmechanik and der Turbulenzforschung auf die Geschienbebewegung: Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau and Schiffsbau, Heft 26, Berlin

  • Simon A, Collison AJC (2001) Quantifying the mechanical and hydrological effects of riparian vegetation on streambank stability. Earth Surf Process Landf 27:527–546

    Article  Google Scholar 

  • Stanford JA, Lorang MS, Hauer FR (2005) The shifting habitat mosaic of river ecosystems. Verh Internat Verein Limnol 29(1):123–136

    Google Scholar 

  • Tabacchi E, Lambs L, Guilloy H, Planty-Tabacchi A, Muller E, Décamps H (2000) Impacts of riparian vegetation on hydrological processes. Hydrol Process 14:2959–2976

    Article  Google Scholar 

  • Thorne CR (1990) Effect of vegetation on riverbank erosion and stability. In: Thornes JB (ed) Vegetation and erosion. Wiley, Chichester, pp 125–144

    Google Scholar 

  • Trimble SW (1990) Geomorphic effects of vegetation cover and management: some time and space considerations in prediction of erosion and sediment yield. In: Thornes JB (ed) Vegetation and erosion. Wiley, Chichester, pp 55–65

    Google Scholar 

  • Turner MG, Gardner RH, O′Neill RV (2001) Landscape ecology in theory and practice—pattern and process. Springer-Verlag, New York

    Google Scholar 

  • Turner MG, Collins SL, Lugo AL, Magnuson JJ, Rupp TS, Swanson FJ (2003) Disturbance dynamics and ecological response: the contribution of long-term ecological research. Bioscience 53(1):46–56

    Article  Google Scholar 

  • Van De Wiel MJ, Darby SE (2004) Numerical modeling of bed topography and bank erosion along tree-lined meandering rivers. In: Bennett SJ, Simon A (eds) Riparian vegetation and fluvial geomorphology. American Geophysical Union, Washington, DC, pp 267–282

    Chapter  Google Scholar 

  • Van Rijn LC (1984) Sediment transport. Part III: bed forms and alluvial roughness. J Hydraul Eng ASCE 110(12):1733–1754

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Ward JV, Stanford JA (1983) The serial discontinuity concept of lotic ecosystems. In: Fontaine TD, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science Publishers, Ann Arbor, pp 29–42

    Google Scholar 

  • White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, pp 3–13

    Google Scholar 

  • White WR, Bettess R, Paris E (1982) An analytical approach to river regime. J Hydraul Div ASCE 108(10):1179–1193

    Google Scholar 

  • Willner W, Grabherr G (2007) Die Wälder und Gebüsche Österreichs. 1. Elsevier GmbH, Auflage, München

  • Wohl E, Angermeer PL, Bledsoe B, Kondolf GM, MacDonnell L, Merritt DM, Palmer MA, Poff NLR, Tarboton D (2005) River restoration. Water Resour Res 41:W10301. doi:10.1029/2005WR003985

    Google Scholar 

  • Yang CT, Wan S (1991) Comparison of selected bed-material load formulas. J Hydraul Eng ASCE 117(8):973–989

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Ministry of Agriculture, Forestry, Environment and Water Management and Carinthia Water Authority. We thank Dr. Peter Mayr, Dr. Stephan Schober, Dipl.-Ing. Karim Beheshti, and Dipl.-Ing. Hugo Seitz for their help during field work, and Dr. Elowyn Yager for knowledge exchange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Formann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Formann, E., Egger, G., Hauer, C. et al. Dynamic disturbance regime approach in river restoration: concept development and application. Landscape Ecol Eng 10, 323–337 (2014). https://doi.org/10.1007/s11355-013-0228-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-013-0228-5

Keywords

Navigation