Skip to main content
Log in

Experimental Investigation of Plastic Strain Recovery and Creep in Nanocrystalline Copper Thin Films

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Nanocrystalline metals exhibit a phenomenon called plastic strain recovery whereby plastic strain introduced through a load cycle is gradually recovered under no external loading over a time period of hours and days. In this study, we experimentally explore the diffusive mechanisms and the strain rates for nanocrystalline thin films of copper with an average grain size of about 35 nm during plastic strain recovery and creep. The experiments are performed via the plane strain bulge test and the thin film samples are deposited using thermal evaporation and sputtering. The specimens recover their residual strain in a period of time with two characteristic strain rates, a transient strain recovery rate of the order of 10−7/s and a steady-state strain recovery rate of the order of 10−9/s and there is a characteristic time at which the transition occurs between the two rates. The results suggest that a diffusive mechanism in conjunction with voids within the nanocrystalline material can explain the two plastic strain recovery rates and the transition between the two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hall EO (1951) The deformation and ageing of mild steel: Iii discussion of results. Proc Phys Soc 64(32)

  2. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst:173

  3. Gleiter H (1989) Nanocrystalline materials. Progress Mater Sci 33(4):223–315

    Article  Google Scholar 

  4. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Materialia 48(1):1–29

    Article  Google Scholar 

  5. Kumar KS, Swygenhoven HV, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia 51(19):5743–5774. The Golden Jubilee Issue. Selected topics in Materials Science and Engineering: Past, Present and Future

    Article  Google Scholar 

  6. Weertman JR (2007) Nanostructured materials: processing, properties and applications, 2nd edn. William Andrew Inc, NY, p 537

    Book  Google Scholar 

  7. Wei X, Kysar JW (2011) Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Materialia 59(10):3937–3945

    Article  Google Scholar 

  8. Rajagopalan J, Han JH, Saif MTA (2007) Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315(5820):1831–1834

    Article  Google Scholar 

  9. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Progress Mater Sci 51(4):427–556

    Article  Google Scholar 

  10. Wei Y, Bower AF, Gao H (2008) Recoverable creep deformation and transient local stress concentration due to heterogeneous grain-boundary diffusion and sliding in polycrystalline solids. J Mech Phys Solids 56(4):1460–1483

    Article  MATH  Google Scholar 

  11. Swygenhoven HV, Derlet PM (2001) Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64(9):224105

    Article  Google Scholar 

  12. Wei YJ, Anand L (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52(11):2587–2616

    Article  MATH  Google Scholar 

  13. Keblinski P, Wolf D, Gleiter H (1998) Molecular-dynamics simulation of grain-boundary diffusion creep. Inter Sci 6:205–212

    Google Scholar 

  14. Schiotz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667):561–563, 02

    Article  Google Scholar 

  15. Conrad H, Narayan J (2000) On the grain size softening in nanocrystalline materials. Scripta Materialia 42(11):1025–1030, 5

    Article  Google Scholar 

  16. Wolf D, Yamakov V, Phillpot SR, Mukherjee AK (2003) Deformation mechanism and inverse hall–petch behavior in nanocrystalline materials. Zeitschrift für Metallkunde 94(10):1091–1097, 2015/04/27

    Article  Google Scholar 

  17. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng A 381:71–79

    Article  Google Scholar 

  18. Wei Y, Bower A F, Gao H (2008) Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Materialia 56(8):1741–1752

    Article  Google Scholar 

  19. Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Materialia 46(16):5611–5626

    Article  Google Scholar 

  20. Gad el Hak M (2001) The MEMS Handbook. CRC Press

  21. Bhushan B, Li X (2003) Nanomechanical characterisation of solid surfaces and thin films. Int Mater Rev 48(3):125–164

    Article  Google Scholar 

  22. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20, 1

    Article  Google Scholar 

  23. Chen X, Vlassak JJlassak JJ (2001) Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J Mater Res 16:2974–2982, 10

    Article  Google Scholar 

  24. Tsui TY, Vlassak JJ, Nix WD (1999) Indentation plastic displacement field: Part i. the case of soft films on hard substrates. J Mater Res 14:2196–2203, 6

    Article  Google Scholar 

  25. Hong S, Weihs TP (1989) Residual stresses in thin film using microcantilever beams in thin films. Stress Mech Prop 130:93–98

    Google Scholar 

  26. Baker SP, Nix WD (1994) Mechanical properties of compositionally modulated au-ni thin films: nanoindentation and microcantilever deflection experiments. J Mater Res 9:3131–3144, 12

    Article  Google Scholar 

  27. Baker SP, Keller-Flaig RM, Shu JB (2003) Bauschinger effect and anomalous thermomechanical deformation induced by oxygen in passivated thin cu films on substrates. Acta Materialia 51(10):3019–3036

    Article  Google Scholar 

  28. Xiang Y, Chen X, Vlassak JJ (2005) Plane-strain bulge test for thin films. J Mater Res 20:2360–2370, 9

    Article  Google Scholar 

  29. Han SW, Lee HW, Lee HJ, Kim JY, Kim JH, Oh CS, Choa SH (2006) Mechanical properties of au thin film for application in mems/nens using microtensile test. Curr Appl Phys 6, Supplement 1 (0):e81 – e85. Nano Korea 2005 Symposium Nano Korea 2005 Symposium

    Article  Google Scholar 

  30. Freund LB, Suresh S (2003) Thin film materials: stress, defect formation, and surface evolution. Cambridge University Press, New York

    MATH  Google Scholar 

  31. Zhou W, Yang J, Sun G, Liu X, Fuhua Y, Jinmin L (2008) Fracture properties of silicon carbide thin films by bulge test of long rectangular membrane. J Microelectromech Syst 17(2):453–461

    Article  Google Scholar 

  32. Tugcu P, Neale KW, Wu PD, Inal K (2004) Crystal plasticity simulation of the hydrostatic bulge test. Int J Plastic 20:1603–1653

    Article  MATH  Google Scholar 

  33. Gruber PA, Böhm J, Onuseit F, Wanner A, Spolenak Rcand Arzt E (2008) Size effects on yield strength and strain hardening for ultra-thin cu films with and without passivation: a study by synchrotron and bulge test techniques. Acta Materialia 56(10):2318–2335

    Article  Google Scholar 

  34. Huang CK, Lou WM, Tsai CJ, Wu TC, Lin HY (2007) Mechanical properties of polymer thin film measured by the bulge test. Thin Solid Films 515(18):7222–7226

    Article  Google Scholar 

  35. Vlassak JJ, Nix WD (1992) A new bulge test technique for the determination of young’s modulus and poisson’s ratio of thin films. J Mater Res 7(12):3242–3249

    Article  Google Scholar 

  36. Xiang Y, Chen X, Vlassak JJ (2005) Plane-strain bulge test for thin films. J Mater Res 20(9):2360–2370

    Article  Google Scholar 

  37. Vlassak JJ, Nix WD (1992) A new bulge test technique for the determination of young’s modulus and poisson’s ratio of thin films. J Mater Res 7:3242–3249, 12

    Article  Google Scholar 

  38. Wei X, Lee D, Shim S, Chen X, Kysar JW (2007) Plane-strain bulge test for nanocrystalline copper thin films. Scripta Materialia 57(6):541–544

    Article  Google Scholar 

  39. Yong X, Tsui T Y, Vlassak JJ, McKerrow AJ (2004) Measuring the elastic modulus and ultimate strength of low-k dielectric materials by means of the bulge test:133

  40. Zhou W, Yang J, Li Y, Ji A, Yang F, Yu Y (2009) Bulge testing and fracture properties of plasma-enhanced chemical vapor deposited silicon nitride thin films. Thin Solid Films 517(6):1989–1994

    Article  Google Scholar 

  41. Xiang Y, Tsui TY, Vlassak JJ (2006) The mechanical properties of freestanding electroplated cu thin films. J Mater Res 21:1607–1618, 6

    Article  Google Scholar 

  42. Hencky H (1915) About the stress state in circular plates with negligible bending stiffness. Math Phys 63 (311)

  43. Vlassak JJ (1994) New experimental techniques and analysis methods for study of mechanical properties of materials in small volumes. PhD thesis, Stanford University, Stanford, CA

  44. Tabata O, Kawahata K, Sugiyama S, Igarashi I (1989) Mechanical property measurments of thin films using load-deflection of composite rectangular membrane. In: Proceeding, micro electro mechanical systems IEEE, pp 152–156

  45. Lin P (1990) The in-situ measurement od mechanical properties of multi-layer coatings. PhD thesis, Massachusetts Institue of Technology, Cambridge, MA

  46. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  47. Maseeh F, Senturia SD (1990) Viscoelasticity and creep recovery of polyimide thin films. IEEE Solid-State Sensor Actuator Workshop:55

  48. Kelly PJ, Arnell RD (1999) Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering. J Vacuum Sci Technol 17:945

    Article  Google Scholar 

  49. Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56(3):159–172

    Article  Google Scholar 

  50. Scherrer P (1918) Estimation of the size and internal structure of colloidal particles by mean of rontgen. Nachr GEs Wiss Gottingen 2:96–100

    Google Scholar 

  51. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1(1):22–31

    Article  Google Scholar 

  52. Cullity BD (2001) Elements of x-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  53. Warren BE, Averbach BL (1950) The effect of cold-work distortion on x-ray patterns. J Appl Phys 21(595)

  54. Sanchez-Bajo F, Cumbrera FL (1997) The use of the pseudo-voigt function in the variance method of x-ray line-broadening analysis. J Appl Cryst 30:427–430

    Article  Google Scholar 

  55. Standard test methods for determining average grain size. ASTM International (2013)

  56. International A. Metals Handbook:. ASM International, Materials Park, Ohio (1990)

  57. Fougere GE, Riester L, Ferber M, Weertman JR, Siegel RW (1995) Young’s modulus of nanocrystalline Fe measured by nanoindentation. Mater Sci Eng A-Struct Mater Prop Microstruct Process 204(1–2):1–6. Symposium on Engineering of Nanostructured Materials, BOSTON, MA, NOV 28-30, 1994

    Article  Google Scholar 

  58. Coble RL (1963) A model for boundary diffsuion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682

    Article  Google Scholar 

  59. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Materialia 50(1):61–73

    Article  Google Scholar 

  60. Karch J, Birringer R, Gleiter H (1987) Ceramics ductile at low temperature. Nature 330(6148):556–558, 12

    Article  Google Scholar 

  61. Nieman GW, Weertman JR, Siegel RW (1991) Mechanical behavior of nanocrystalline cu and pd. J Mater Res 6(5):1012–1027

    Article  Google Scholar 

  62. Hugo RC, Kung H, Weertman JR, Mitra R, Knapp JA, Follstaedt DM (2003) In-situ tem tensile testing of dc magnetron sputtered and pulsed laser deposited ni thin films. Acta Materialia 51:1937–1943

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Science Foundation (NSF DMR-1310503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ghazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazi, N., Kysar, J.W. Experimental Investigation of Plastic Strain Recovery and Creep in Nanocrystalline Copper Thin Films. Exp Mech 56, 1351–1362 (2016). https://doi.org/10.1007/s11340-016-0169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0169-7

Keywords

Navigation