Skip to main content
Log in

Orientation-Dependent Impact Behavior of Polymer/EVA Bilayer Specimens at Long Wavelengths

  • Brief Technical Note
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lim CT, Shim VPW, Ng YH (2003) Finite-element modeling of the ballistic impact of fabric armor. Int J Impact Eng 28(1):13–31

    Article  Google Scholar 

  2. Chiyo D, et al. (2010) Reactive structure and smart armor for army’s future ground vehicles. Army tank automotive research development and engineering center warren MI

  3. Roylance D, Wilde A, Tocci G (1973) Ballistic impact of textile structures. Textile Res J 43(1):34–41

    Article  Google Scholar 

  4. Shim VPW, Lim CT, Foo KJ (2001) Dynamic mechanical properties of fabric armour. Int J Impact Eng 25(1):1–15

    Article  Google Scholar 

  5. Li Y, Ramesh KT, Chin ESC (2001) Dynamic characterization of layered and graded structures under impulsive loading. Int J Solids Struct 38(34):6045–6061

    Article  MATH  Google Scholar 

  6. Citron J (2012) Biomechanical impact management using polyurea. Dissertation, University of California, Los Angeles

    Google Scholar 

  7. Youssef G (2010) Dynamic properties of polyurea. Dissertation, University of California, Los Angeles

    Google Scholar 

  8. Youssef G, Gupta V (2012) Resonance in polyurea-based multilayer structures subjected to laser-generated stress waves. J Exp Mech 52:1–10

    Article  Google Scholar 

  9. Youssef G, Gupta V (2012) Dynamic response of polyurea subjected to nanosecond rise-time stress waves. J Mech Time-Depend Mat 16:1–12

    Article  Google Scholar 

  10. Youssef G, Gupta V (2012) Dynamic tensile strength of polyurea. J Mater Res 27:494–499

    Article  Google Scholar 

  11. Barsoum GS, Dudt PJ (2010) The fascinating behaviors of ordinary materials under dynamic conditions. Ammtiac Quarterly 4:11–14

    Google Scholar 

  12. Bishop PJ (2000) Impact performance characteristics of hockey helmets with liners of differing thickness. Safety in ice hockey: third volume, ASTM STP 1341, A.B.. Ashare, ED., American Society of Testing and Materials, West Conshohocken, PA

  13. Tekalur SA, Shukla A, Shivakumar K (2008) Blast resistance of polyurea based layered composite materials. Compo Struct 84:271–281

    Article  Google Scholar 

  14. Bahei-El-Din YA, Dvorak GJ, Fredricksen OJ (2006) A blasttolerant sandwich plate design with a polyurea interlayer. Int J Solids Struct 43:7644–7658

    Article  MATH  Google Scholar 

  15. Amini MR, Isaacs J, Nemat-Nasser S (2010) Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mech Mater 42:628–639

    Article  Google Scholar 

  16. Grujicic M, Pandurangan B, He T, Cheeseman BA, Yen C-F, Randow CL (2010) Computational investigation of impact energy absorption capability of polyurea coatings via deformation induced glass transition. Mater Sci Eng, A 527:7741–7751

    Article  Google Scholar 

  17. Bowen LG, Fletcher ER, Richmond DR (1968) Estimate of man’s tolerance to the direct effects of air blast. Defense Atomic Support Agency #2113, AD693105

  18. Christou GA (2010) Development of a helmet liner for protection against blast induced trauma. Diss. Massachusetts Institute of Technology

  19. ASTM Standard F1614 (2006) Standard test method for shock attenuating properties of materials systems for athletic footwear. West Conshohocken: ASTM International, doi:10.1520/F1614-99R06, www.astm.org

  20. Sarva S, Deschanel S, Boyce M, Chen W (2007) Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 48:2208–2213

    Article  Google Scholar 

  21. Yi J, Boyce M, Lee G, Balizer E (2006) Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes. Polymer 47:319–329

    Article  Google Scholar 

  22. Roland C, Twigg J, Vu Y, Mott P (2007) High strain rate mechanical behavior of polyurea. Polymer 48:574–578

    Article  Google Scholar 

  23. ASTM Standard D 7136/D 7136M (2005) Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. ASTM International, West Conshohocken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, V., Youssef, G. Orientation-Dependent Impact Behavior of Polymer/EVA Bilayer Specimens at Long Wavelengths. Exp Mech 54, 1133–1137 (2014). https://doi.org/10.1007/s11340-014-9854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9854-6

Keywords

Navigation