Skip to main content
Log in

Influence of Anisotropy Generated by Rolling on the Stress Measurement by Ultrasound in 7050 T7451 Aluminum

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Stress applied to a material can be evaluated using ultrasonic waves. This practice is based on acoustoelastic theory, which relates the stress to the velocity of a wave traveling through the body. How the stress affects the wave velocity is determined by the material’s acoustoelastic constant. This constant can be experimentally measured or calculated from the material’s elastic constants. However, ultrasonic techniques have yet to be adopted as an inspection tool in the field. A factor contributing to this fact is the non-uniformity of materials, mostly associated with grain alignment or texture. As researchers consider this factor, they should take into account the anisotropy generated by rolling. The common practice, however, when relating strain and wave velocity is to ignore anisotropy and to simply utilize isotropic models. No studies have been performed to evaluate the effect of anisotropy on the stress measurement by ultrasound, especially for methods using critically refracted longitudinal waves. The aim of this study is to evaluate how the anisotropy generated by rolling affects the acoustoelastic effect for 7050 T7451 aluminum alloy. We compare the value of the acoustoelastic constant obtained experimentally for rolled samples to the constant calculated with measured elastic constants when the material is assumed to be isotropic. The results show that the methods yield different results, suggesting that the simplified isotropic model should be applied with caution. Since no true known value for elastic constants exists, the results can be used to approach the uncertainty when employing the isotropic model to evaluate stresses in aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruud CO (2000) Residual stress measurements. In: ASM Handbook: mechanical testing and evaluation, ASM International, Materials Park

  2. Juvinall RC, Marshek KM (2005) Fundamentals of machine component design. Wiley, New York

    Google Scholar 

  3. Hughes DS, Kelly JL (1953) Second-order elastic deformation of solids. Phys Rev 92(4):1145–1149. doi:10.1103/PhysRev.92.1145

    Article  MATH  Google Scholar 

  4. Duquennoy M, Ouaftouh M, Ourak M (1999) Ultrasonic evaluation of stresses in orthotropic materials using Rayleigh waves. NDT & E Int 32:189–199. doi:10.1016/S0963-8695(98)00046-2

    Article  Google Scholar 

  5. Hu E, He Y, Chen Y (2009) Experimental study on the surface stress measurement with Rayleigh wave detection technique. Appl Acoust 70:356–360. doi:10.1016/j.apacoust.2008.03.002

    Article  Google Scholar 

  6. Delsanto PP, Clark AV Jr (1987) Rayleigh wave propagation in deformed orthotropic materials. J Acoust Soc Am 81(4):952–960. doi:10.1121/1.394575

    Article  Google Scholar 

  7. Ling Z, Zhou H, Zhang H (2009) Nondestructive pressure measurement in vessels using Rayleigh waves and LCR Waves. IEEE Trans Instrum Meas 58(5):1578–1584. doi:10.1109/TIM.2009.2012936

    Article  Google Scholar 

  8. Schneider E, Goebbels K, Hiibschen G, Salzburger HJ (1981) Determination of residual stress by time-of-flight measurements with linear-polarized shear waves. Ultrason Symp 81:956–959

    Google Scholar 

  9. Janssen M (1988) Evaluation of an applied plane-stress tensor distribution using ultrasonic shear waves. Exp Mech 9:226–231. doi:10.1007/BF02329015

    Article  Google Scholar 

  10. Nikitina NY, Ostrovsky LA (1998) An ultrasonic method for measuring stresses in engineering materials. Ultrasonics 35(8):605–610. doi:10.1016/S0041-624X(97)00154-6

    Article  Google Scholar 

  11. Sasaki Y, Hasegawa M (2007) Effect of anisotropy on acoustoelastic birefringence in wood. Ultrasonics 46(2):184–190. doi:10.1016/j.ultras.2007.01.009

    Article  Google Scholar 

  12. Fraga RS, Andrino MH, Santos AA (2009) Evaluation of the penetration depth of LCR waves for stress measurement. Proc. 3rd International conference on integrity, reliability and failure, Porto, Portugal

  13. Egle DM, Bray DE (1976) Measurement of acoustoelastic and third order elastic constants for rail steel. J Acoust Soc Am 60(3):741–744. doi:10.1121/1.381146

    Article  Google Scholar 

  14. Qozam H, Chaki S, Bourse G, Robin C, Walaszek H, Bouteille P (2010) Microstructure effect on the Lcr elastic wave for welding residual stress measurement. Exp Mech 50:179–185. doi:10.1007/s11340-009-9283-0

    Article  Google Scholar 

  15. Santos AA, Santos GFM, Santos FC, Andrino MH, Rosário JM (2009) Application of Lcr waves to evaluate residual stresses in the RIM of railroad forged wheels. J Nondestruct Eval 28:91–100. doi:10.1007/s10921-009-0051-y

    Article  Google Scholar 

  16. Johnson GC, Springer WC (1989) A comparison of measured and predicted second- and third-order elastic constants of a textured aggregate. Int J Solids Struct 25(6):609–619. doi:10.1016/0020-7683(89)90028-0

    Article  Google Scholar 

  17. Duquennoy M, Ouaftouh M, Ourak M, Xu WJ (1999) Influence of natural and initial acoustoelastic coefficients on residual stress evaluation: theory and experiment. J Appl Phys 86(5):2490–2498. doi:10.1063/1.371082

    Article  Google Scholar 

  18. Tanala E, Bourse G, Fremiot M, De Belevall JF (1995) Determination of near surface residual stresses on welded joints using ultrasonic methods. NDT & E Int 28(2):83–88. doi:10.1016/0963-8695(94)00013-A

    Article  Google Scholar 

  19. Duquennoy M, Ouaftouh M, Ourak M, Jenot F (2002) Theoretical determination of Rayleigh wave acoustoelastic coefficients: comparison with experimental values. Ultrasonics 39:575–583. doi:10.1016/S0925-4005(98)00143-9

    Article  Google Scholar 

  20. Stobbe DM (2005) Acoustoelasticity in 7075-T651 aluminum and dependence of third order elastic constants on fatigue damage. Dissertation, Georgia Institute of Technology

  21. Guz AN, Makhort FG (2000) The physical fundamentals of the ultrasonic nondestructive stress analysis of solids. Int Appl Mech 36(9):1119–1149. doi:10.1023/A:1009442132064

    Article  Google Scholar 

  22. Pao YH, Gamer U (1985) Acoustoelastic waves in orthotropic media. J Acoust Soc Am 77(3):806–812. doi:10.1121/1.392384

    Article  MATH  Google Scholar 

  23. Pao YH, Sachse W, Fukuoka H (1984) Acoustoelasticity and ultrasonic measurements of residual stresses. In: Mason WP (ed) Thurston RN physical acoustics, 1st edn. Academic, New York, pp 61–143

    Google Scholar 

  24. Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press, New York

    Google Scholar 

  25. Bray DE, Stanley RK (1997) Nondestructive evaluation: a tool in design, manufacturing and service. CRC, Boca Raton

    Google Scholar 

  26. Harnish SF et al (2005) High high-temperature mechanical behavior and hot rolling of AA705X. Metall Mater Trans A 36(2):357–369. doi:10.1007/s11661-005-0308-8

    Article  Google Scholar 

  27. Driver JH, Engler O (2004) Design of aluminum rolling processes for foil, sheet, and plate. In: Xie L, Funatani K, Totten GE (eds) Handbook of metallurgical process design, 1st edn. Marcel Dekker, New York, pp 69–114

    Chapter  Google Scholar 

  28. The Aluminum Association (2007) Rolling aluminum: from the mine through the mill, 3rd edn. The Aluminum Association, Arlington

    Google Scholar 

  29. Pereira P (2010) Influência da anisotropia gerada por laminação sobre a medição de tensões por ultrassom em ligas de alumínio 7050. Dissertation, Universidade Estadual de Campinas

  30. Santos AA, Bray DE (2000) Ultrasonic stress measurement using PC based and commercial flaw detectors. Rev Sci Instrum 71(9):3464–3469. doi:10.1063/1.1287339

    Article  Google Scholar 

  31. Proakis J, Manolakis D (1996) Digital signal processing principles, algorithms and applications. Prentice Hall, Boston

    Google Scholar 

  32. Zhang H, He Q, Yan Y (2008) A new nondestructive technique for measuring pressure in vessels by surface waves. Appl Acoust 69:891–900. doi:10.1016/j.apacoust.2007.05.011

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Campinas–Unicamp and the Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior–CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, P., Santos, A.A. Influence of Anisotropy Generated by Rolling on the Stress Measurement by Ultrasound in 7050 T7451 Aluminum. Exp Mech 53, 415–425 (2013). https://doi.org/10.1007/s11340-012-9647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9647-8

Keywords

Navigation