Skip to main content
Log in

Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A number of parametric and nonparametric methods for estimating cognitive diagnosis models (CDMs) have been developed and applied in a wide range of contexts. However, in the literature, a wide chasm exists between these two families of methods, and their relationship to each other is not well understood. In this paper, we propose a unified estimation framework to bridge the divide between parametric and nonparametric methods in cognitive diagnosis to better understand their relationship. We also develop iterative joint estimation algorithms and establish consistency properties within the proposed framework. Lastly, we present comprehensive simulation results to compare different methods and provide practical recommendations on the appropriate use of the proposed framework in various CDM contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Celeux, G., & Govaert, G. (1992). A classification EM algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis, 14(3), 315–332.

    Article  Google Scholar 

  • Chen, Y., Culpepper, S. A., Chen, Y., & Douglas, J. (2018). Bayesian estimation of the DINA Q matrix. Psychometrika, 83(1), 89–108.

    Article  PubMed  Google Scholar 

  • Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850–866.

    Article  PubMed  Google Scholar 

  • Chiu, C.-Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30(2), 225–250.

    Article  Google Scholar 

  • Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: theory and applications. Psychometrika, 74, 633–665.

    Article  Google Scholar 

  • Chiu, C.-Y., & Köhn, H.-F. (2019). Consistency theory for the general nonparametric classification method. Psychometrika, 84(3), 830–845.

    Article  PubMed  Google Scholar 

  • Chiu, C.-Y. and H.-F. Köhn (2019b). Nonparametric methods in cognitively diagnostic assessment. Handbook of Diagnostic Classification Models, pp. 107–132.

  • Chiu, C.-Y., Köhn, H.-F., Zheng, Y., & Henson, R. (2016). Joint maximum likelihood estimation for diagnostic classification models. Psychometrika, 81(4), 1069–1092.

    Article  PubMed  Google Scholar 

  • Chiu, C.-Y., Sun, Y., & Bian, Y. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method. Psychometrika, 83(2), 355–375.

    Article  PubMed  Google Scholar 

  • Chung, M., & Johnson, M.S. (2018). An MCMC algorithm for estimating the Q-matrix in a Bayesian framework. arXiv preprint arXiv:1802.02286.

  • Culpepper, S. (2019). Estimating the cognitive diagnosis Q matrix with expert knowledge: Application to the fraction-subtraction dataset. Psychometrika, 84(2), 333–357.

    Article  PubMed  Google Scholar 

  • de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115–130.

    Article  Google Scholar 

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179–199.

    Article  Google Scholar 

  • de la Torre, J., van der Ark, L. A., & Rossi, G. (2018). Analysis of clinical data from a cognitive diagnosis modeling framework. Measurement and Evaluation in Counseling and Development, 51(4), 281–296.

    Article  Google Scholar 

  • DiBello, L., Roussos, L., & Stout, W. (2006). Review of cognitively diagnostic assessment and a summary of psychometric models. Handbook of Statistics, 26, 979–1030.

    Article  Google Scholar 

  • George, A. C., & Robitzsch, A. (2015). Cognitive diagnosis models in R: A didactic. The Quantitative Methods for Psychology, 11(3), 189–205.

    Article  Google Scholar 

  • Gu, Y., & Xu, G. (2019). Learning attribute patterns in high-dimensional structured latent attribute models. Journal of Machine Learning Research 20.

  • Gu, Y., & Xu, G. (2020). Partial identifiability of restricted latent class models. The Annals of Statistics, 48(4), 2082–2107.

    Article  Google Scholar 

  • Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26(4), 301–321.

    Article  Google Scholar 

  • Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. Ph. D. thesis, ProQuest Information and Learning.

  • Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191.

    Article  Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272.

    Article  Google Scholar 

  • Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41(3), 205–237.

    Article  Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548–564.

    Article  PubMed  Google Scholar 

  • Liu, J., Ying, Z., & Zhang, S. (2015). A rate function approach to computerized adaptive testing for cognitive diagnosis. Psychometrika, 80(2), 468–490.

    Article  PubMed  Google Scholar 

  • Ma, C., & Xu, G. (2022). Hypothesis testing for hierarchical structures in cognitive diagnosis models. Journal of Data Science, 20(3), 279–302.

    Article  Google Scholar 

  • Popescu, P. G., S. S. Dragomir, E. I. Sluşanschi, and O. N. Stănăşilă (2016). Bounds for Kullback-Leibler divergence. Electronic Journal of Differential Equations 2016.

  • Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345–354.

    Article  Google Scholar 

  • Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79(2), 317–339.

    Article  PubMed  Google Scholar 

  • Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287.

    Article  PubMed  Google Scholar 

  • van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge: Cambridge University Press.

    Google Scholar 

  • von Davier, M. (2005). A general diagnostic model applied to language testing data. ETS Research Report Series, 2005(2), i–35.

    Article  Google Scholar 

  • Wang, S., & Douglas, J. (2015). Consistency of nonparametric classification in cognitive diagnosis. Psychometrika, 80(1), 85–100.

    Article  PubMed  Google Scholar 

  • Xu, G. (2017). Identifiability of restricted latent class models with binary responses. The Annals of Statistics, 45(2), 675–707.

    Article  Google Scholar 

  • Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284–1295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongjun Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is partially supported by NSF CAREER SES-1846747, DMS-1712717, SES-1659328.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 174 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., de la Torre, J. & Xu, G. Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis. Psychometrika 88, 51–75 (2023). https://doi.org/10.1007/s11336-022-09878-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-022-09878-2

Keywords

Navigation