Skip to main content

Advertisement

Log in

Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, G. (2013). Multi-way functional principal components analysis. In Computational advances in multi-sensor adaptive processing (CAMSAP), 2013 IEEE 5th International Workshop on. IEEE.

  • Altamura, M., Goldberg, T. E., Elvevåg, B., Holroyd, T., Carver, F. W., Weinberger, D. R., et al. (2010). Prefrontal cortex modulation during anticipation of working memory demands as revealed by magnetoencephalography. Journal of Biomedical Imaging. doi:10.1155/2010/840416.

  • Bernardi, M. S., Sangalli, L. M., Mazza, G., & Ramsay, J. O. (2016). A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-016-1237-3.

  • Bollen, K. A., Kirby, J. B., Curran, P. J., Paxton, P. M., & Chen, F. (2007). Latent variable models under misspecification: Two-stage least squares (2SLS) and maximum likelihood (ML) estimators. Sociological Methods & Research, 36(1), 48–86.

    Article  Google Scholar 

  • Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5(1), 49–62.

    Article  PubMed  Google Scholar 

  • Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149–171.

    Article  Google Scholar 

  • Bro, R., & Kiers, H. A. L. (2003). A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics, 17(5), 274–286.

    Article  Google Scholar 

  • Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika, 35(3), 283–319.

    Article  Google Scholar 

  • Cichocki, A., Zdunek, Rl, Phan, A. H., & Amari, S. (2009). Nonnegative matrix and tensor factorizations: Applications to exploratory multi-way data analysis and blind source separation. New York: Wiley.

    Book  Google Scholar 

  • Cong, F., Lin, Q. H., Kuang, L. D., Gong, X. F., Astikainen, P., & Ristaniemi, T. (2015). Tensor decomposition of EEG signals: A brief review. Journal of Neuroscience Methods, 248, 59–69.

    Article  PubMed  Google Scholar 

  • Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.

    Article  PubMed  Google Scholar 

  • Dauvier, B., Chevalier, N., & Blaye, A. (2012). Using finite mixture of GLMs to explore variability in children’s flexibility in a task-switching paradigm. Cognitive Development, 27(4), 440–454.

    Article  Google Scholar 

  • Doppelmayr, M., Klimesch, W., Schwaiger, J., Stadler, W., & Roehm, D. (2000). The time locked theta response reflects interindividual differences in human memory performance. Neuroscience Letters, 278(3), 141–144.

    Article  PubMed  Google Scholar 

  • Folland, G. B. (1995). Introduction to partial differential equations. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Germond, L., Dojat, M., Taylor, C., & Garbay, C. (2000). A cooperative framework for segmentation of MRI brain scans. Artificial Intelligence in Medicine, 20(1), 77–93.

    Article  PubMed  Google Scholar 

  • Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. In UCLA Working Papers in Phonetics (Vol. 16, pp. 1–84).

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Holter, N. S., Maritan, A., Cieplak, M., Fedoroff, N. V., & Banavar, J. R. (2001). Dynamic modeling of gene expression data. Proceedings of the National Academy of Sciences, 98(4), 1693–1698.

    Article  Google Scholar 

  • Hwang, H. (2009). Regularized generalized structured component analysis. Psychometrika, 74(3), 517–530.

    Article  Google Scholar 

  • Kamakura, W. A., & Russell, G. (1989). A probabilistic choice model for market segmentation and elasticity structure. Journal of Marketing Research, 26, 379–390.

    Article  Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2), 169–195.

    Article  PubMed  Google Scholar 

  • Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–500.

    Article  Google Scholar 

  • Krause, C. M., Sillanmäki, L., Koivisto, M., Häggqvist, A., Saarela, C., Revonsuo, A., et al. (2000). Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task. Neuroreport, 11(4), 761–764.

    Article  PubMed  Google Scholar 

  • Kroonenberg, P. M. (1987). Multivariate and longitudinal data on growing children. Solutions using a three-mode principal component analysis and some comparison results with other approaches. In J. Janssen, F. Marcotorchino, & J. M. Proth (Eds.), Data analysis. The ins and outs of solving real problems (pp. 89–112). New York: Plenum.

  • Kroonenberg, P. M., & De Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45(1), 69–97.

    Article  Google Scholar 

  • Kroonenberg, P. M., Harshman, R. A., & Murakami, T. (2009). Analysing three-way profile data using the Parafac and Tucker3 models illustrated with views on parenting. Applied Multivariate Research, 13(1), 5–41.

    Article  Google Scholar 

  • Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Its Applications, 18(2), 95–138.

    Article  Google Scholar 

  • Kuze, T., Goto, M., Ninomiya, K., Asano, K., Miyazawa, S., Munekata, H., et al. (1985). A longitudinal study on development of adolescents’ social attitudes. Japanese Psychological Research, 27(4), 195–205.

    Article  Google Scholar 

  • Lei, P. W. (2009). Evaluating estimation methods for ordinal data in structural equation modeling. Quality and Quantity, 43(3), 495–507.

    Article  Google Scholar 

  • Li, J., Joshi, D., & Wang, J. Z. (2004). Stochastic modeling of volume images with a 3-D hidden Markov model. In Image Processing, 2004. ICIP’04. 2004 International Conference on. IEEE.

  • Miwakeichi, F., Martınez-Montes, E., Valdés-Sosa, P. A., Nishiyama, N., Mizuhara, H., & Yamaguchi, Y. (2004). Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage, 22(3), 1035–1045.

    Article  PubMed  Google Scholar 

  • Mizuhara, H., Yonehara, E., & Gofuku, A. (2007). Parallel factor analysis can decompose human EEG during a finger movement task. In SICE, 2007 Annual Conference. IEEE.

  • Mørup, M. (2005). Analysis of brain data—Using multi-way array models on the EEG. M.Sc. Thesis. Technical University of Denmark.

  • Mørup, M., Hansen, L. K., Herrmann, C. S., Parnas, J., & Arnfred, S. M. (2006). Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage, 29(3), 938–947.

    Article  PubMed  Google Scholar 

  • Nazarpour, K., Sanei, S., Shoker, L., & Chambers, J. A. (2006). Parallel space-time-frequency decomposition of EEG signals for brain computer interfacing. In Signal processing conference, 2006 14th European. IEEE.

  • Oort, F. J. (2001). Three-mode models for multivariate longitudinal data. British Journal of Mathematical and Statistical Psychology, 54(1), 49–78.

    Article  PubMed  Google Scholar 

  • Pepper, D. W., & Heinrich, J. C. (2006). The finite element method: Basic concepts and applications. New York: Taylor & Francis.

    Google Scholar 

  • Ramsay, J. O., Hooker, G., & Graves, S. (2009). Functional data analysis with R and MATLAB. New York: Springer.

    Book  Google Scholar 

  • Ramsay, J. O., Ramsay, T. O., & Sangalli, L. M. (2011). Spatial functional data analysis. Recent advances in functional data analysis and related topics (pp. 269–275). Berlin: Springer.

    Chapter  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Ramsay, T. O. (2002). Spline smoothing over difficult regions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(2), 307–319.

    Article  Google Scholar 

  • Reis, M. M., & Ferreira, M. (2002). PARAFAC with splines: A case study. Journal of Chemometrics, 16(8–10), 444–450.

    Article  Google Scholar 

  • Rosenberg, S. (1997). The Laplacian on a Riemannian manifold: An introduction to analysis on manifolds. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ruppert, D., & Carroll, R. J. (2000). Spatially-adaptive penalties for spline fitting. Australian & New Zealand Journal of Statistics, 42(2), 205–223.

    Article  Google Scholar 

  • Sands, R., & Young, F. W. (1980). Component models for three-way data: An alternating least squares algorithm with optimal scaling features. Psychometrika, 45(1), 39–67.

    Article  Google Scholar 

  • Sangalli, L. M., Ramsay, J. O., & Ramsay, T. O. (2013). Spatial spline regression models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(4), 681–703.

    Article  Google Scholar 

  • Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology, 57(2), 97–103.

    Article  PubMed  Google Scholar 

  • Scott-Hayward, L. A. S., MacKenzie, M. L., Donovan, C. R., Walker, C. G., & Ashe, E. (2014). Complex region spatial smoother (CReSS). Journal of Computational and Graphical Statistics, 23(2), 340–360.

    Article  Google Scholar 

  • Sharbrough, F., Chatrian, G. E., Lesser, R. P., Lüders, H., Nuwer, M., & Picton, T. W. (1991). American Electroencephalographic Society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 8(2), 200–202.

    Article  Google Scholar 

  • Stegeman, A., & Sidiropoulos, N. D. (2007). On Kruskal’s uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra and Its Applications, 420(2), 540–552.

    Article  Google Scholar 

  • Thirion, B., & Faugeras, O. (2003). Dynamical components analysis of fMRI data through kernel PCA. NeuroImage, 20(1), 34–49.

    Article  PubMed  Google Scholar 

  • Tian, T. S. (2010). Functional data analysis in brain imaging studies. Frontiers in Psychology, 1, 1–11.

    Google Scholar 

  • Timmerman, M. E., & Kiers, H. A. L. (2002). Three-way component analysis with smoothness constraints. Computational Statistics & Data Analysis, 40(3), 447–470.

    Article  Google Scholar 

  • Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3), 279–311.

    Article  PubMed  Google Scholar 

  • Valdes-Sosa, P. A. (2004). Spatio-temporal autoregressive models defined over brain manifolds. Neuroinformatics, 2(2), 239–250.

    Article  PubMed  Google Scholar 

  • Weis, M., Romer, F., Haardt, M., Jannek, D., & Husar, P. (2009). Multi-dimensional space-time-frequency component analysis of event related EEG data using closed-form PARAFAC. Paper presented at the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

  • Wilderjans, T. F., & Ceulemans, E. (2013). Clusterwise Parafac to identify heterogeneity in three-way data. Chemometrics and Intelligent Laboratory Systems, 129, 87–97.

    Article  Google Scholar 

  • Wood, S. N., Bravington, M. V., & Hedley, S. L. (2008). Soap film smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5), 931–955.

    Article  Google Scholar 

  • Wood, S. A., Jiang, W., & Tanner, M. (2002). Bayesian mixture of splines for spatially adaptive nonparametric regression. Biometrika, 89(3), 513–528.

    Article  Google Scholar 

  • Xiao, G., Wang, X., & Khodursky, A. B. (2011). Modeling three-dimensional chromosome structures using gene expression data. Journal of the American Statistical Association, 106(493), 61–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. L., Begleiter, H., Porjesz, B., Wang, W., & Litke, A. (1995). Event related potentials during object recognition tasks. Brain Research Bulletin, 38(6), 531–538.

    Article  PubMed  Google Scholar 

  • Zienkiewicz, O. C. (1971). The finite element method in engineering science. London: McGraw-Hill.

    Google Scholar 

  • Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method. Oxford: Butterworth-Heinemann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Yeh Choi.

Additional information

The authors wish to thank Jelena Ristic for her constructive comments on the analysis of EEG data.

The MATLAB code used in this paper is available upon request from the author Ji Yeh Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.Y., Hwang, H. & Timmerman, M.E. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments. Psychometrika 83, 1–20 (2018). https://doi.org/10.1007/s11336-017-9558-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-017-9558-9

Keywords

Navigation