Skip to main content

Advertisement

Log in

Joint Maximum Likelihood Estimation for Diagnostic Classification Models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models (DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incorporating an external, statistically consistent estimator of examinees’ proficiency class membership into the joint likelihood function, which subsequently allows for the construction of item parameter estimators that also have the consistency property. Consistency of the JMLE parameter estimators is established within the framework of general DCMs: The JMLE parameter estimators are derived for the Loglinear Cognitive Diagnosis Model (LCDM). Two consistency theorems are proven for the LCDM. Using the framework of general DCMs makes the results and proofs also applicable to DCMs that can be expressed as submodels of the LCDM. Simulation studies are reported for evaluating the performance of JMLE when used with tests of varying length and different numbers of attributes. As a practical application, JMLE is also used with “real world” educational data collected with a language proficiency test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques (2nd ed.). New York: Marcel Dekker.

    Google Scholar 

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Load & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 397–479). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Buck, G., & Tatsuoka, K. K. (1998). Application of the rule-space procedure to language testing: Examining attributes of a free response listening test. Language Testing, 15, 119–157.

    Google Scholar 

  • Chiu, C.-Y., & Douglas, J. A. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response profiles. Journal of Classification, 30, 225–250.

    Article  Google Scholar 

  • Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633–665.

    Article  Google Scholar 

  • Chiu, C.-Y., & Köhn, H.-F. (2015). Consistency of cluster analysis for cognitive diagnosis: The DINO model and the DINA model revisited. Applied Psychological Measurement, 39, 465–479.

    Article  Google Scholar 

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.

    Article  Google Scholar 

  • de la Torre, J., & Chiu, C.-Y. (2010, April). A general empirical method of Q-matrix validation. Paper presented at the annual meeting of the National Council on Measurement in Education, Denver, CO.

  • DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of Statistics. Psychometrics (Vol. 26, pp. 979–1030). Amsterdam: Elsevier.

  • ECPE 2013 report. (2013). Retrieved March 10, 2013, from http://www.cambridgemichigan.org/resources/ecpe/reports

  • Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Feng, Y., Habing, B. T., & Huebner, A. (2014). Parameter estimation of the Reduced RUM using the EM algorithm. Applied Psychological Measurement, 38, 137–150.

    Article  Google Scholar 

  • Haberman, S. J. (2004, May). (2005, September). Joint and conditional maximum likelihood estimation for the Rasch model for binary responses. Research report no. RR-04-20. Princeton, NJ: Educational Testing Service.

  • Haberman, S. J., & von Davier, M. (2007). Some notes on models for cognitively based skill diagnosis. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics. Psychometrics (Vol. 26, pp. 1031–1038). Amsterdam: Elsevier.

  • Hartz, S. M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: Blending theory with practicality. Doctoral dissertation. Available from ProQuest Dissertations and Theses database. UMI No. 3044108.

  • Hartz, S. M., & Roussos, L. A. (October 2008). The Fusion Model for skill diagnosis: Blending theory with practicality. Research report no. RR-08-71. Princeton, NJ: Educational Testing Service.

  • Henson, R. A., & Templin, J. (2007, April). Large-scale language assessment using cognitive diagnosis models. Paper presented at the annual meeting of the National Council on Measurement in Education, Chicago, IL.

  • Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.

    Article  Google Scholar 

  • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13–30.

    Article  Google Scholar 

  • Junker, B. W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56, 255–278.

    Article  Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.

    Article  Google Scholar 

  • Leighton, J., & Gierl, M. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Leighton, J. P., Gierl, M. J., & Hunka, S. (2004). The attribute hierarchy model: An approach for integrating cognitive theory with assessment practice. Journal of Educational Measurement, 41, 205–236.

    Article  Google Scholar 

  • Liu, Y., Douglas, J. A., & Henson, R. A. (2009). Testing person fit in cognitive diagnosis. Applied Psychological Measurement, 33, 579–598.

    Article  Google Scholar 

  • Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique, and future directions. Statistics in Medicine, 28, 3049–3067.

    Article  PubMed  Google Scholar 

  • Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 33, 379–416.

    Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide (7th edn.) Los Angeles: Muthén & Muthén.

  • Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.

    Article  Google Scholar 

  • Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2015). CDM: Cognitive diagnosis modeling. R package version 3.1-14. Retrieved from the Comprehensive R Archive Network [CRAN] website

  • Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York: Guilford.

    Google Scholar 

  • Tatsuoka, K. (1985). A probabilistic model for diagnosing misconception in the pattern classification approach. Journal of Educational Statistics, 12, 55–73.

    Google Scholar 

  • Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.

    Article  PubMed  Google Scholar 

  • Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79, 317–339.

    Article  PubMed  Google Scholar 

  • Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32, 37–50.

    Article  Google Scholar 

  • Vermunt, J. K., & Magidson, J. (2000). Latent GOLD’s users’s guide. Boston: Statistical Innovations Inc.

    Google Scholar 

  • von Davier, M. (2005, September). A general diagnostic model applied to language testing data. Research report no. RR-05-16. Princeton, NJ: Educational Testing Service.

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–301.

    Article  Google Scholar 

  • Wang, S., & Douglas, J. (2015). Consistency of nonparametric classification in cognitive diagnosis. Psychometrika, 80, 85–100.

    Article  PubMed  Google Scholar 

  • Zheng, Y., & Chiu, C.-Y. (2014). NPCD: Nonparametric methods for cognitive diagnosis. R package version 1.0-5. http://CRAN.R-project.org/package=NPCD

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yi Chiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, CY., Köhn, HF., Zheng, Y. et al. Joint Maximum Likelihood Estimation for Diagnostic Classification Models. Psychometrika 81, 1069–1092 (2016). https://doi.org/10.1007/s11336-016-9534-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-016-9534-9

Keywords

Navigation