Skip to main content
Log in

Modeling Associations Among Multivariate Longitudinal Categorical Variables in Survey Data: A Semiparametric Bayesian Approach

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the distributions of the factors are modeled nonparametrically through a dynamic hierarchical Dirichlet process prior. A Markov chain Monte Carlo algorithm is developed for fitting the model, and the methodology is exemplified through a study of the dynamics of public attitudes toward science and technology in the United States over the period 1992–2001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Albert, J.H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.

    Article  Google Scholar 

  • Bak, H.J. (2001). Education and public attitudes toward science: implications for the deficit model of education and support for science and technology. Social Science Quarterly, 82(4), 779–795.

    Article  Google Scholar 

  • Bhattacharya, A., & Dunson, D.B. (2011). Sparse Bayesian infinite factor models. Biometrika, 98(2), 291–306.

    Article  PubMed  Google Scholar 

  • Caron, F., Davy, M., & Doucet, A. (2007). Generalized poly urn for time-varying Dirichlet process mixtures. In Proceedings of the twenty-third annual conference on uncertainty in artificial intelligence (pp. 33–40). Corvallis: AUAI Press.

    Google Scholar 

  • Dunson, D.B. (2006). Bayesian dynamic modeling of latent trait distributions. Biostatistics, 7(4), 551–568.

    Article  PubMed  Google Scholar 

  • Escofier, B., & Pages, J. (1988). Analyses factorielles simples et multiples; objectifs, méthodes et interprétations. Paris: Dunod.

    Google Scholar 

  • Everitt, B.S. (1992). The analysis of contingency tables (2nd ed.). London: Chapman & Hall.

    Google Scholar 

  • Fokoue, E., & Titterington, D.M. (2003). Mixtures of factor analysers: Bayesian estimation and inference by stochastic simulation. Machine Learning, 50, 73–94.

    Article  Google Scholar 

  • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In J.M. Bernardo, J.O. Berger, A.P. Dawid, & A.F.M. Smith (Eds.), Bayesian statistics (pp. 169–193). Oxford: Clarendon Press.

    Google Scholar 

  • Ghosh, J., & Dunson, D.B. (2009). Default priors and efficient posterior computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, 18, 306–320.

    Article  Google Scholar 

  • Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.

    Article  Google Scholar 

  • Goodman, L.E. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables (with discussion). International Statistical Review, 54, 243–270.

    Article  Google Scholar 

  • Goodman, L.A., & Hout, M. (1998). Statistical methods and graphical displays for analyzing how the association between two qualitative variables differs among countries, among groups, or over time: a modified regression-type approach. Sociological Methodology, 28, 175–230.

    Article  Google Scholar 

  • Greenacre, M.J. (2007). Correspondence analysis in practice (2nd ed.). Boca Raton: Chapman & Hall.

    Book  Google Scholar 

  • Ishwaran, H., & James, L.F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96, 161–173.

    Article  Google Scholar 

  • Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.

    Google Scholar 

  • Lee, S.Y., & Song, X.Y. (2002). Bayesian selection on the number of factors in a factor analysis model. Behaviormetrika, 29, 23–40.

    Article  Google Scholar 

  • Lopes, H.F., & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 41–67.

    Google Scholar 

  • MacEachern, S.N. (1999). Dependent nonparametric processes. In Proceedings of Bayesian statistical science section (pp. 50–55). Alexandria: Am. Statist. Assoc..

    Google Scholar 

  • MacEachern, S.N. (2000). Dependent Dirichlet processes. Unpublished manuscript, Department of Statistics, The Ohio State University.

  • MacEachern, S.N. (2001). Decision theoretic aspects of dependent nonparametric processes. In E. George & P. Nanopoulos (Eds.), Bayesian methods with applications to science, policy and official statistics (pp. 551–560). Crete: International Society for Bayesian Analysis.

    Google Scholar 

  • McLachlan, G.J., Peel, D., & Bean, R.W. (2003). Modelling high-dimensional data by mixtures of factor analyzers. Computational Statistics & Data Analysis, 41, 379–388.

    Article  Google Scholar 

  • Mislevy, R.J. (1986). Recent developments in the factor analysis of categorical variables. Journal of Educational Statistics, 11(1), 3–31.

    Article  Google Scholar 

  • Ng, S., & Moench, E. (2011). A hierarchical factor analysis of US housing market dynamics. Econometrics Journal, 14(1), 1–24.

    Article  Google Scholar 

  • Ren, L., Dunson, D.B., & Carin, L. (2008). The dynamic hierarchical Dirichlet process. In Proceedings of the international conference on machine learning (pp. 824–831). Helsinki: ACM.

    Chapter  Google Scholar 

  • Sasaki, M., & Suzuki, T. (1991). Dimensions of public acceptance of science and technology among five industrialized nations. Behaviormetrika, 29, 73–82.

    Article  Google Scholar 

  • Teh, Y.W., Jordan, M.I., Beal, M.J., & Blei, D.M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101, 1566–1581.

    Article  Google Scholar 

  • Thurstone, L.L. (1947). Multiple factor analysis. Chicago: University of Chicago Press.

    Google Scholar 

  • Yang, M., & Dunson, D.B. (2010). Bayesian semiparametric structural equation models with latent variables. Psychometrika, 75(4), 675–693.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor, an associate editor, and two anonymous reviewers for comments and suggestions that greatly improved the manuscript. This research was partly supported by a Warren J. Mitofsky Fellowship from the Roper Center at the University of Connecticut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Tchumtchoua.

Appendices

Appendix A

Estimation proceeds through the following steps:

Step 1

Sample z tigj , t=1,…,T, i=1,…,n t , and g=1,…,K, from

where TN denotes a truncated normal distribution.

Step 2

Sample \(\tilde{\pi}_{t}\), t=1,…,T−1, and \(\tilde{\omega}_{tl} \), t=1,…,T, l=1,…,L, from

Step 3

Sample m ti and c ti , t=1,…,T, i=1,…,n t , from a multinomial distribution with

where N r (x;μ;Σ) denotes the probability density function of an r-dimensional vector having a multivariate normal distribution with mean vector μ and covariance matrix Σ, evaluated at x.

Step 4

Sample the component parameters \(\{ \varLambda_{l}^{*}\}_{l = 1}^{L}\) from

Step 5

Sample each ψ tig , t=1,…,T, i=1,…,n t , and g=1,…,K, from

$$\psi_{\mathit{tig}}|A_{g},B_{g},\varLambda_{ti},z_{\mathit{tig}}\sim N_{q_{g}}\bigl(W(A_{g}'z_{\mathit{tig}} + \varOmega_{g}^{ - 1}B{}_{g}\varLambda_{ti}),W\bigr), \quad W = \bigl(A_{g}'A_{g} + \varOmega_{g}^{ - 1}\bigr)^{ - 1}. $$

Step 6

Sample μ gj , g=1,…,K, j=1,…,p g from

$$\mu_{gj}|z_{tgj},\psi_{tg},A_{g}\sim N\bigl(n + \sigma_{g0}^{ - 2}\bigr)^{ - 1}\Biggl( \sigma_{g0}^{ - 2}\mu_{g0} + \sum _{t = 1}^{T} \sum_{i = 1}^{n_{t}} (z_{\mathit{tig}j} - a_{g,j}\psi_{\mathit{tig}})^{2} ,\bigl(n + \sigma_{g0}^{ - 2}\bigr)^{ - 1}\Biggr). $$

Step 7

Sample a g,j , the jth row A g , g=1,…,K, and \(j = 2, \ldots,p_{g_{1}} + p_{g_{2}}\), from

Step 8

Sample b g,j , the jth diagonal element of B g , g=2,…,K and j=1,…,q g , from

Step 9

Sample \(\sigma_{g,j}^{ - 2}\), g=1,…,K and j=1,…,q g , from

Step 10

Sample the thresholds ς gj,r , \(g = 1,\ldots,K, j = 1, \ldots,p_{g_{2}}\), and r=1,…,ν j , from the full conditional

which, following Albert and Chib (1993), is a uniform distribution on the interval

$$\bigl[\max\bigl\{ \max\{ z_{\mathit{tig}j}:y_{\mathit{tig}j} = r\} ,\varsigma_{gj,r - 1}\bigr\} ,\min\bigl\{ \min\{ z_{\mathit{tig}j}:y_{\mathit{tig}j} = r + 1\} ,\varsigma_{gj,r + 1}\bigr\} \bigr]. $$

Appendix B

Table B.1. National Science Foundation Surveys of Public’s Understanding of S&T data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchumtchoua, S., Dey, D.K. Modeling Associations Among Multivariate Longitudinal Categorical Variables in Survey Data: A Semiparametric Bayesian Approach. Psychometrika 77, 670–692 (2012). https://doi.org/10.1007/s11336-012-9274-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-012-9274-4

Key words

Navigation