Skip to main content
Log in

Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Facial electromyography (EMG) is a useful physiological measure for detecting subtle affective changes in real time. A time series of EMG data contains bursts of electrical activity that increase in magnitude when the pertinent facial muscles are activated. Whereas previous methods for detecting EMG activation are often based on deterministic or externally imposed thresholds, we used regime-switching models to probabilistically classify each individual’s time series into latent “regimes” characterized by similar error variance and dynamic patterns. We also allowed the association between EMG signals and self-reported affect ratings to vary between regimes and found that the relationship between these two markers did in fact vary over time. The potential utility of using regime-switching models to detect activation patterns in EMG data and to summarize the temporal characteristics of EMG activities is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov, & F. Csaki (Eds.), Proceedings of the second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.

    Google Scholar 

  • Akima, H. (1970a). A method of univariate interpolation that has the accuracy of a third-degree polynomial. ACM Transactions on Mathematical Software, 17(3), 341–366.

    Article  Google Scholar 

  • Akima, H. (1970b). A new method of interpolation and smooth curve fitting based on local procedures. Journal of the Association of Computing Machinery, 17(4), 589–602.

    Google Scholar 

  • Aptech Systems Inc. (2009). GAUSS (Version 10). Black Diamond: Author. Computer software manual.

  • Biopac Systems, Inc. (2005). MP system hardware guide, Goleta: Biopac Systems, Inc. Computer software manual.

    Google Scholar 

  • Cacioppo, J., Martzke, J.S., Petty, R.E., & Tassinary, L.G. (1988). Specific forms of facial EMG response index emotions during an interview: From Darwin to the continuous flow hypothesis of affect-laden information processing. Journal of Personality and Social Psychology, 54, 592–604.

    Article  PubMed  Google Scholar 

  • Cacioppo, J., & Petty, R. (1981). Electromyograms as measures of extent and affectivity of information processing. American Psychologist, 36, 441–456.

    Article  PubMed  Google Scholar 

  • Cacioppo, J., Petty, R., Losch, M., & Kim, H. (1986). Electromyographic activity over facial muscle regions can differentiate the valence and intensity of affective reactions. Journal of Personality and Social Psychology, 50, 260–268.

    Article  PubMed  Google Scholar 

  • Cacioppo, J., & Tassinary, L. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45, 16–28.

    Article  PubMed  Google Scholar 

  • Chow, S.-M., Ferrer, E., & Hsieh, F. (Eds.) (2009). Notre Dame series on quantitative methodology : Vol. 4. Statistical methods for modeling human dynamics: An interdisciplinary dialogue. New York: Taylor & Francis.

    Google Scholar 

  • Davidson, R. (1998). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition and Emotion, 12(3), 307–330.

    Article  Google Scholar 

  • Davis, W.J., Rahman, M.A., Smith, L.J., Burns, A., Senecal, L., McArthur, D. et al. (1995). Properties of human affect induced by static color slides (IAPS): Dimensional, categorical and electromyographic analysis. Biological Psychology, 41, 229–253.

    Article  PubMed  Google Scholar 

  • Dimberg, U. (1990). Facial electromyography and emotional reactions. Psychophysiology, 27, 481–494.

    Article  PubMed  Google Scholar 

  • Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial expressions. Psychological Science, 11(1), 86–89.

    Article  PubMed  Google Scholar 

  • Dolan, C., Schmittmann, V., Lubke, G., & Neale, M. (2005). Regime switching in the latent growth curve mixture model. Structural Equation Modeling, 12(1), 94–119.

    Article  Google Scholar 

  • Doucet, A., de Freitas, N., & Gordon, N. (Eds.) (2001). Sequential Monte Carlo methods in practice. New York: Springer.

    Google Scholar 

  • Durbin, J., & Koopman, S. (2001). Time series analysis by state space methods. Oxford: Oxford University Press.

    Google Scholar 

  • Fridlund, A., & Cacioppo, J. (1986). Guidlines for human electromyographic research. Psychophysiology, 23(5), 567–589.

    Article  PubMed  Google Scholar 

  • Frühwirth-Schnatter, S. (2001). Fully Bayesian analysis of switching Gaussian state space models. Annals of the Institute of Statistical Mathematics, 53(1), 31–49.

    Article  Google Scholar 

  • Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. New York: Springer.

    Google Scholar 

  • Fukuda, K., & Ishihara, K. (1997). Development of human sleep and wakefulness rhythm during the first six months of life: Discontinuous changes at the 7th and 12th week after birth. Biological Rhythm Research, 28, 94–103.

    Article  Google Scholar 

  • Gilbert, D. (2007). Stumbling on happiness. New York: Vintage.

    Google Scholar 

  • Gilboa, E., & Revelle, W. (1994). Personality and the structure of affective responses. In S. Van Goozen, N. Van de Poll, & J. Sergeant (Eds.), Emotions: Essays on emotion theory. Philadelphia: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hamilton, J.D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57, 357–384.

    Article  Google Scholar 

  • Hamilton, J.D. (1994). Time series analysis. Princeton: Princeton University Press.

    Google Scholar 

  • Harvey, A.C. (1981). The econometric analysis of time series. New York: Wiley.

    Google Scholar 

  • Harvey, A.C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hodges, P., & Bui, B. (1996). A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 101, 511–519.

    Article  Google Scholar 

  • Hosenfeld, B. (1997). Indicators of discontinuous change in the development of analogical reasoning. Journal of Experimental Child Psychology, 64, 367–395.

    Article  PubMed  Google Scholar 

  • Hsieh, F., Ferrer, E., Chen, S., & Chow, S.-M. (2010). Exploring the dynamics of dyadic interactions via hierarchical segmentation. Psychometrika, 75(2), 351–372.

    Article  Google Scholar 

  • Jackson, C. (2009). Package ‘msm’ (Version 0.9.5). Vienna: R Foundation for Statistical Computing. Computer software manual. Available from http://cran.r-project.org/web/packages/msm/index.html.

    Google Scholar 

  • Johnson, T., Elashoff, R., & Harkema, S. (2003). A Bayesian change-point analysis of electromyographic data: Detecting muscle activation patterns and associated applications. Biostatistics, 4(1), 143–164.

    Article  PubMed  Google Scholar 

  • Kim, C.-J., & Nelson, C.R. (1999a). State-space models with regime switching: Classical and Gibbs-sampling approaches with applications. Cambridge: MIT Press.

    Google Scholar 

  • Kim, C.-J., & Nelson, C.R. (1999b). Has the US economy become more stable? A Bayesian approach on a Markov-switching model of the business cycle. The Review of Econometrics and Statistics, 81, 608–616.

    Article  Google Scholar 

  • Lang, P., Bradley, M., & Cuthbert, B. (2005). International affective picture system (IAPS): Instruction manual and affective ratings (Technical Report A–6). The Center for Research in Psychophysiology, University of Florida.

  • Larsen, R.J. (2000). Toward a science of mood regulation. Psychological Inquiry, 11(3), 129–141.

    Article  Google Scholar 

  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. New York: Springer.

    Google Scholar 

  • Muthén, L.K., & Muthén, B.O. (2001). Mplus (Version 5). Los Angeles: Muthén and Muthén. Computer software manual.

    Google Scholar 

  • Neale, M.C., Boker, S.M., Xie, G., & Maes, H.H. (2002). Mx: Statistical modeling (Version 5). Richmond: Virginia Commonwealth University. Computer software manual.

    Google Scholar 

  • Piaget, J., & Inhelder, B. (1969). The psychology of the child. New York: Basic Books.

    Google Scholar 

  • R Development Core Team. (2009). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Computer software manual. Available from http://www.R-project.org (ISBN 3-900051-07-0).

    Google Scholar 

  • Ram, N., Chow, S.-M., Bowles, R.P., Wang, L., Grimm, K.J., Fujita, F. et al. (2005). Recovering cyclicity in pleasant and unpleasant affect using spectral analysis, the rating scale model, and planned incompleteness. Psychometrika: Application Reviews and Case Studies, 70, 773–790.

    Google Scholar 

  • Ravaja, N., Saari, T., Puttonen, S., & Keltikangas Jarvinen, L. (2008). The psychophysiology of James Bond: Phasic emotional responses to violent video game events. Emotion, 8(1), 114–120.

    Article  PubMed  Google Scholar 

  • Robinson, J.D., Cinciripini, P.M., Carter, B.L., Lam, C.Y., & Wetter, D.W. (2007). Facial EMG as an index of affective response to nicotine. Experimental and Clinical Psychopharmacology, 15(4), 390–399.

    Article  PubMed  Google Scholar 

  • SAS Institute Inc. (2008). SAS 9.2 help and documentation. Cary: SAS Institute Inc. Computer software manual.

    Google Scholar 

  • Schmittmann, V., Dolan, C., Van der Maas, H., & Neale, M. (2005). Discrete latent Markov models for normally distributed response data. Multivariate Behavioral Research, 40(4), 461–488.

    Article  Google Scholar 

  • Schwartz, G.E. (1975). Biofeedback self-regulation, and the patterning of physiological processes. American Scientist, 63, 314–324.

    PubMed  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.

    Article  Google Scholar 

  • Sison, C., Alpert, M., Fudge, R., & Stern, R. (1996). Constricted expressiveness and psychophysiological reactivity in schizophrenia. The Journal of Nervous and Mental disease, 184(10), 589–597.

    Article  PubMed  Google Scholar 

  • Staude, G., & Wolf, W. (1999). Objective motor response onset detection in surface myoelectric signals. Medical Engineering and Physics, 21, 449–467.

    Article  PubMed  Google Scholar 

  • The MathWorks, Inc. (1991). MATLAB user’s guide. Natick: The MathWorks, Inc. Computer software manual.

    Google Scholar 

  • Timberlake Consultants Ltd. (2009). OxMetrics (Version 6.0). London: Author. Computer software manual.

  • Van der Maas, H., & Molenaar, P. (1992). Stagewise cognitive development: An application of catastrophe theory. Psychological Review, 99(3), 395–417.

    Article  PubMed  Google Scholar 

  • Van Dijk, M., & Van Geert, P. (2007). Wobbles, humps and sudden jumps: A case study of continuity, discontinuity and variability in early language development. Infant and Child Development, 16(1), 7–33.

    Article  Google Scholar 

  • West, M., & Harrison, J. (1997). Bayesian forecasting and dynamic models (2nd ed.). New York: Springer.

    Google Scholar 

  • Weyers, P., Hlberger, A., Hefele, C., & Pauli, P. (2006). Electromyographic responses to static and dynamic avatar emotional facial expressions. Psychophysiology, 43, 450–453.

    Article  PubMed  Google Scholar 

  • Zhang, Z., Hamaker, E.L., & Nesselroade, J.R. (2008). Comparisons of four methods for estimating a dynamic factor model. Structural Equation Modeling, 15(1), 377–402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manshu Yang.

Additional information

Preparation of this article was supported in part by the National Science Foundation grant BCS-0826844 awarded to Sy-Miin Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Chow, SM. Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data. Psychometrika 75, 744–771 (2010). https://doi.org/10.1007/s11336-010-9176-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-010-9176-2

Keywords

Navigation