Skip to main content

Advertisement

Log in

Dmax method estimates lactate threshold in individuals with type 2 diabetes

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

While several studies have identified the lactate threshold (LT) through the visual method, others have suggested the application of mathematical models, such as Dmax. However, its validity has not yet been investigated in individuals with type 2 diabetes (T2D). The purpose of this study was to compare and analyze the relationship between variables of internal and external load at LT identified by the visual and Dmax methods in T2D individuals. Seven T2D (62.2 years, 71.6 kg, 26.4 kg m−2) and nine non-diabetics (ND) individuals (59.7 years, 68.2 kg, 26.4 kg m−2) underwent an incremental exercise test on a cycle ergometer. Heart rate (HR), blood lactate and expired gas concentrations were measured at the end of each stage. The visual LT was considered an exercise intensity above which an over proportional increase in blood lactate was observed in relation to increasing workload. Dmax point was objectively identified on the lactate regression curve that yielded the higher distance to the straight line formed between the first and the last point of the curve. The results indicates no statistical differences between the visual and Dmax methods, respectively, for the workload (68.5 ± 28.1 vs. 53.6 ± 22.7), HR (129.4 ± 12.2 vs. 133.1 ± 18.3) and VO2 (14.3 ± 3 vs. 14.3 ± 2.5) corresponding to the LT for T2D. As well as no differences were identified for the ND group for workload (70.2 ± 18.9 vs. 65 ± 30.9), HR (124.3 ± 19.5 vs. 124.3 ± 17.3) and VO2 (15.8 ± 2.5 vs. 16.4 ± 4.4). We conclude that the Dmax could be easily determined during incremental exercise in both T2D and controls and apparently do occurs at intensities related to LT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Simoes HG, Campbell CS, Kushnick MR, Nakamura A, Katsanos CS, Baldissera V, Moffatt RJ (2003) Blood glucose threshold and the metabolic responses to incremental exercise tests with and without prior lactic acidosis induction. Eur J Appl Physiol 89(6):603–611. doi:10.1007/s00421-003-0851-1

    Article  CAS  PubMed  Google Scholar 

  2. Sales MM, Campbell CS, Morais PK, Ernesto C, Soares-Caldeira LF, Russo P, Motta DF, Moreira SR, Nakamura FY, Simoes HG (2011) Noninvasive method to estimate anaerobic threshold in individuals with type 2 diabetes. Diabetol Metab Syndr 3(1):1. doi:10.1186/1758-5996-3-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Simoes HG, Hiyane WC, Benford RE, Madrid B, Prada FA, Moreira SR, de Oliveira RJ, Nakamura FY, Campbell CS (2010) Lactate threshold prediction by blood glucose and rating of perceived exertion in people with type 2 diabetes. Percept Mot Skills 111(2):365–378. doi:10.2466/06.13.15.27.PMS.111.5.365-378

    Article  PubMed  Google Scholar 

  4. Zanuso S, Jimenez A, Pugliese G, Corigliano G, Balducci S (2010) Exercise for the management of type 2 diabetes: a review of the evidence. Acta Diabetol 47(1):15–22. doi:10.1007/s00592-009-0126-3

    Article  PubMed  Google Scholar 

  5. Svedahl K, MacIntosh BR (2003) Anaerobic threshold: the concept and methods of measurement. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee 28 (2):299–323

  6. Karapetian G, Engels H, Gretebeck R (2008) Use of heart rate variability to estimate LT and VT. Int J Sports Med 29(8):652–657

    Article  CAS  PubMed  Google Scholar 

  7. Karapetian GK, Engels HJ, Gretebeck KA, Gretebeck RJ (2012) Effect of caffeine on LT, VT and HRVT. Int J Sports Med 33(7):507–513. doi:10.1055/s-0032-1301904

    Article  CAS  PubMed  Google Scholar 

  8. Schneider DA, McLellan TM, Gass GC (2000) Plasma catecholamine and blood lactate responses to incremental arm and leg exercise. Med Sci Sports Exerc 32(3):608–613

    Article  CAS  PubMed  Google Scholar 

  9. Brubaker PH, Kiyonaga A, Matrazzo BA, Pollock WE, Shindo M, Miller HS Jr, Tanaka H (1997) Identification of the anaerobic threshold using double product in patients with coronary artery disease. Am J Cardiol 79(3):360–362

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka H, Kiyonaga A, Terao Y, Ide K, Yamauchi M, Tanaka M, Shindo M (1997) Double product response is accelerated above the blood lactate threshold. Med Sci Sports Exerc 29(4):503–508

    Article  CAS  PubMed  Google Scholar 

  11. Hargens TA, Griffin DC, Kaminsky LA, Whaley MH (2011) The influence of aerobic exercise training on the double product break point in low-to-moderate risk adults. Eur J Appl Physiol 111(2):313–318. doi:10.1007/s00421-010-1661-x

    Article  PubMed  Google Scholar 

  12. Oliveira JCd, Baldissera V, Simões HG, Aguiar APd, Azevedo PHSMd, Poian PAFdO, Perez SEdA (2006) Identificação do limiar de lactato e limiar glicêmico em exercícios resistidos. Revista Brasileira de Medicina do Esporte 12(6):333–338

    Article  Google Scholar 

  13. Davis JA, Rozenek R, DeCicco DM, Carizzi MT, Pham PH (2007) Comparison of three methods for detection of the lactate threshold. Clin Physiol Funct Imaging 27(6):381–384. doi:10.1111/j.1475-097X.2007.00762.x

    Article  CAS  PubMed  Google Scholar 

  14. Pires FdO, Silva AEL, Gagliardi JFL, Barros RV, Kiss MAPDM (2006) Caracterização da curva do lactato sanguíneo e aplicabilidade do modelo Dmax durante protocolo progressivo em esteira rolante. Revista Brasileira de Medicina do Esporte 12(2):71–75

    Article  Google Scholar 

  15. Newell J, Higgins D, Madden N, Cruickshank J, Einbeck J, McMillan K, McDonald R (2007) Software for calculating blood lactate endurance markers. J Sports Sci 25(12):1403–1409. doi:10.1080/02640410601128922

    Article  PubMed  Google Scholar 

  16. Zhou S, Weston SB (1997) Reliability of using the D-max method to define physiological responses to incremental exercise testing. Physiol Meas 18(2):145–154

    Article  CAS  PubMed  Google Scholar 

  17. Krzymien J, Karnafel W (2013) Lactic acidosis in patients with diabetes. Pol Arch Med Wewn 123(3):91–97

    CAS  PubMed  Google Scholar 

  18. Scale T, Harvey JN (2011) Diabetes, metformin and lactic acidosis. Clin Endocrinol 74(2):191–196. doi:10.1111/j.1365-2265.2010.03891.x

    Article  CAS  Google Scholar 

  19. Kilpatrick ES, Bloomgarden ZT, Zimmet PZ (2009) International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes: response to the International Expert Committee. Diabetes Care 32(12):e159

    Article  PubMed  PubMed Central  Google Scholar 

  20. Expert Committee on the D, Classification of Diabetes M (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26(Suppl 1):S5–S20

    Google Scholar 

  21. Ellis KJ, Bell SJ, Chertow GM, Chumlea WC, Knox TA, Kotler DP, Lukaski HC, Schoeller DA (1999) Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference. Nutrition 15(11–12):874–880

    Article  CAS  PubMed  Google Scholar 

  22. Wasserman K, McIlroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844–852

    Article  CAS  PubMed  Google Scholar 

  23. Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M (1992) A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med 13(7):518–522. doi:10.1055/s-2007-1021309

    Article  CAS  PubMed  Google Scholar 

  24. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  25. Carnethon MR, Jacobs DR Jr, Sidney S, Liu K, study C (2003) Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care 26(11):3035–3041

    Article  PubMed  Google Scholar 

  26. Tank AW, Lee Wong D (2015) Peripheral and central effects of circulating catecholamines. Comp Physiol 5(1):1–15. doi:10.1002/cphy.c140007

    Google Scholar 

  27. Fisher JP, Young CN, Fadel PJ (2015) Autonomic adjustments to exercise in humans. Compreh Physiol 5(2):475–512. doi:10.1002/cphy.c140022

    Article  Google Scholar 

  28. American Diabetes A (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90. doi:10.2337/dc14-S081

    Article  Google Scholar 

  29. Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993–1017. doi:10.1152/physrev.00038.2012

    Article  CAS  PubMed  Google Scholar 

  30. Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJ, Stehouwer CD, Smulders YM, van Hinsbergh VW (2013) Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endo Metab Dis 14(1):39–48. doi:10.1007/s11154-013-9239-7

    Article  Google Scholar 

  31. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  CAS  PubMed  Google Scholar 

  32. Cusi K, Consoli A, DeFronzo RA (1996) Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81(11):4059–4067. doi:10.1210/jcem.81.11.8923861

    CAS  PubMed  Google Scholar 

  33. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD (1988) Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37(8):1020–1024

    Article  CAS  PubMed  Google Scholar 

  34. Lalau JD (2010) Lactic acidosis induced by metformin: incidence, management and prevention. Drug Saf 33(9):727–740. doi:10.2165/11536790-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  35. Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S, Wiley C, Selvin E, Wilson R, Bass EB, Brancati FL (2007) Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med 147(6):386–399

    Article  PubMed  Google Scholar 

  36. Denadai BS, Figueira TR, Favaro OR, Goncalves M (2004) Effect of the aerobic capacity on the validity of the anaerobic threshold for determination of the maximal lactate steady state in cycling. Braz J Med Biol Res 37(10):1551–1556

    Article  CAS  PubMed  Google Scholar 

  37. Van Schuylenbergh R, Vanden Eynde B, Hespel P (2004) Correlations between lactate and ventilatory thresholds and the maximal lactate steady state in elite cyclists. Int J Sports Med 25(6):403–408. doi:10.1055/s-2004-819942

    Article  PubMed  Google Scholar 

  38. You T, Arsenis NC, Disanzo BL, Lamonte MJ (2013) Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms. Sports Med 43(4):243–256. doi:10.1007/s40279-013-0023-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Vinicius de Paula and Prof. Lúcia Kobayashi for their technical assistance and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting the scholarships in undergraduate research level (CNPq), MSc (CAPES), PhD (CAPES) and of productivity in research (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel da Silva Aguiar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

S. da Silva Aguiar, C. V. de Sousa and M. Magalhães Sales have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Aguiar, S., de Sousa, C.V., Sales, M.M. et al. Dmax method estimates lactate threshold in individuals with type 2 diabetes. Sport Sci Health 12, 175–181 (2016). https://doi.org/10.1007/s11332-016-0272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-016-0272-2

Keywords

Navigation