Skip to main content

Advertisement

Log in

Characterization of an Orthotopic Colorectal Cancer Mouse Model and Its Feasibility for Accurate Quantification in Positron Emission Tomography

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Quantification in positron emission tomography (PET) imaging of an orthotopic mouse model of colorectal cancer (CRC) is challenging due to difficult tumor delineation. We aimed to establish a reproducible delineation approach, evaluate its feasibility for reliable PET quantification and compare its added translational value with its subcutaneous counterpart.

Procedures

A subcutaneous Colo205-luc2 tumor fragment harvested from a donor mouse was transplanted onto the caecum of nude mice, with (n = 10) or without (n = 10) the addition of an X-ray detectable thread. Animals underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging, complemented with X-ray computed tomography (CT) and magnetic resonance imaging (MRI, 7T). Animals without a thread underwent additional contrast enhanced (Exitron) CT imaging. Tumors were delineated on the MRI, μPET image or contrast enhanced μCT images and correlations between in vivo and ex vivo [18F]FDG tumor uptake as well as between image-derived and caliper-measured tumor volume were evaluated. Finally, cancer hallmarks were assessed immunohistochemically for the characterization of both models.

Results

Our results showed the strongest correlation between both in vivo and ex vivo uptake (r = 0.84, p < 0.0001) and image-derived and caliper-measured tumor volume (r = 0.96, p < 0.0001) when the tumor was delineated on the MR image. Orthotopic tumors displayed an abundance of stroma, higher levels of proliferation (p = 0.0007), apoptosis (p = 0.02), and necrosis (p < 0.0001), a higher number of blood vessels (p < 0.0001); yet lower tumor hypoxia (p < 0.0001) as compared with subcutaneous tumors.

Conclusions

This orthotopic mouse model proved to be a promising tool for the investigation of CRC through preclinical imaging studies provided the availability of anatomical MR images for accurate tumor delineation. Furthermore, the tumor microenvironment of the orthotopic tumor resembled more that of human CRC, increasing its likelihood to advance translational nuclear imaging studies of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA-Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Wilson PM, Labonte MJ, Lenz H-J (2010) Molecular markers in the treatment of metastatic colorectal cancer. Cancer J 16:262–272

    Article  CAS  PubMed  Google Scholar 

  3. Jung J (2014) Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol Res 30:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Teicher BA (2006) Tumor models for efficacy determination. Mol Cancer Ther 5:2435–2443

    Article  CAS  PubMed  Google Scholar 

  5. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2:247–250

    Article  CAS  PubMed  Google Scholar 

  6. Talmadge JE, Singh RK, Fidler IJ, Raz A (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson JI, Decker S, Zaharevitz D et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rubio-Viqueira B, Hidalgo M (2009) Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther 85:217–221

    Article  CAS  PubMed  Google Scholar 

  9. Hackl C, Man S, Francia G et al (2012) Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut 62:259–271

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation. Eur J Cancer 40:852–857

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investig New Drugs 17:343–359

    Article  CAS  Google Scholar 

  12. Tseng W, Leong X, Engleman E (2007) Orthotopic mouse model of colorectal cancer. JoVE 10:484

    Google Scholar 

  13. Tseng WW, Winer D, Kenkel JA et al (2010) Development of an orthotopic model of invasive pancreatic cancer in an immunocompetent murine host. Clin Cancer Res 16:3684–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pavese J, Ogden IM, Bergan RC (2013) An orthotopic murine model of human prostate cancer metastasis. JoVE 79:e50873

    Google Scholar 

  15. Haldorsen IS, Popa M, Fonnes T et al (2015) Multimodal imaging of orthotopic mouse model of endometrial carcinoma. PLoS One 10:e0135220

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao HST, Kaushal S, Snyder CS et al (2010) Real-time imaging of tumor progression in a fluorescent orthotopic mouse model of thyroid cancer. Anticancer Res 30:4415–4422

    Google Scholar 

  17. Yahyanejad S, Granton PV, Lieuwes NG, et al. (2015) Complementary use of bioluminescence imaging and contrast-enhanced micro-computed tomography in an orthotopic brain tumor model. Mol Imaging

  18. Partecke IL, Kaeding A, Sendler M, et al. (2011) In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer

  19. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  20. Weber DC, Zilli T, Buchegger F et al (2008) [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 3:44

    Article  PubMed  PubMed Central  Google Scholar 

  21. Van den Abbeele AD (2008) The lessons of GIST-PET and PET/CT: a new paradigm for imaging. Oncologist 13:8–13

    Article  PubMed  Google Scholar 

  22. Kircher MF, Hricak H, Larson SM (2012) Molecular imaging for personalized cancer care. Mol Oncol 6:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mees G, Vangestel C, Dierckx R et al (2010) Carbonic anhydrase IX expression correlates with FDG uptake by primary non-small cell lung cancer. Cancer Biother Radiopharm 25:149–154

    Article  CAS  PubMed  Google Scholar 

  24. Maeda K, Chung YS, Takatsuka S et al (1995) Tumour angiogenesis and tumour cell proliferation as prognostic indicators in gastric carcinoma. Br J Cancer 72:319–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mannheim JG, Schlichthaerle T, Kuebler L et al (2016) Comparison of small animal CT contrast agents. Contrast Media Mol Imaging 11:272–284

    Article  CAS  PubMed  Google Scholar 

  26. Boll H, Nittka S, Doyon F et al (2011) Micro-CT based experimental liver imaging using a nanoparticulate contrast agent: a longitudinal study in mice. PLoS One 6:e25692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nebuloni L, Kuhn GA, Mueller R (2013) A comparative analysis of water-soluble and blood-pool contrast agents for in vivo vascular imaging with micro-CT. Acad Radiol 20:1247–1255

    Article  PubMed  Google Scholar 

  28. Wathen CA, Foje N, van Avermaete T et al (2013) In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. Sensors 13:6957–6980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45:82S–95S

    PubMed  Google Scholar 

  30. Céspedes MV, Espina C, García-Cabezas MA et al (2007) Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites. Am J Pathol 170:1077–1085

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Bruycker S, Vangestel C, Van den Wyngaert T et al (2016) Baseline [18F]FMISO μPET as a predictive biomarker for response to HIF-1α inhibition combined with 5-FU chemotherapy in a human colorectal cancer xenograft model. Mol Imaging Biol 18:606–616

    Article  CAS  PubMed  Google Scholar 

  32. Mukaida N, Sasaki S (2016) Fibroblasts, an inconspicuous but essential player in colon cancer development and progression. World J Gastroenterol 22:5301–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Love C, Tomas MB, Tronco GG, Palestro CJ (2005) FDG PET of infection and inflammation. Radiographics 25:1357–1368

    Article  PubMed  Google Scholar 

  34. Rajput A, Agarwal E, Leiphrakpam P et al (2013) Establishment and validation of an orthotopic metastatic mouse model of colorectal cancer. ISRN Hepatol 2013:206875

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Philippe Joye and Caroline Berghmans of the Molecular Imaging Center Antwerp as well as Johan Van Audekerke of the Bio-Imaging Lab for their valuable technical assistance. This work was funded by the University of Antwerp through a Bijzonder Onderzoeksfond for S.R. (BOF27327) and the iMinds ICON project FIAT (functional image analysis of tumors) for J.V., M.V. and R.H. Si.S and C.V. are supported by the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union’s Seventh Framework Program (FP7/2007-2013) and EFPIA companies’ in-kind contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Stroobants.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapic, S., Vangestel, C., Verhaeghe, J. et al. Characterization of an Orthotopic Colorectal Cancer Mouse Model and Its Feasibility for Accurate Quantification in Positron Emission Tomography. Mol Imaging Biol 19, 762–771 (2017). https://doi.org/10.1007/s11307-017-1051-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1051-4

Key words

Navigation