Skip to main content

Advertisement

Log in

Using Dual Fluorescence Reporting Genes to Establish an In Vivo Imaging Model of Orthotopic Lung Adenocarcinoma in Mice

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy.

Procedures

A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system.

Results

For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells.

Conclusions

We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, et al (2014) GLOBOCAN 2012 v1.1, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer. Available from: http://globocan.iarc.fr, accessed 16 Jan 2015

  2. Boolell V, Alamgeer M, Watkins DN, Ganju V (2015) The evolution of therapies in non-small cell lung cancer. Cancers (Basel) 7:1815–1846

    Article  Google Scholar 

  3. Guz M, Rivero-Müller A, Okoń E et al (2014) MicroRNAs-role in lung cancer. Dis Markers 2014:218169

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, He J (2013) The development of targeted therapy in small cell lung cancer. J Thorac Dis 5:538–548

    PubMed  PubMed Central  Google Scholar 

  5. Youlden DR, Cramb SM, Baade PD (2008) The international epidemiology of lung cancer: geographical distribution and secular trends. J Thorac Oncol 3:819–831

    Article  PubMed  Google Scholar 

  6. American Cancer Society (2015) Cancer facts & figures 2015. American Cancer Society, Atlanta

    Google Scholar 

  7. Kuo TH, Kubota T, Watanabe M et al (1993) Site-specific chemosensitivity of human small-cell lung carcinoma growing orthotopically compared to subcutaneously in SCID mice: the importance of orthotopic models to obtain relevant drug evaluation data. Anticancer Res 13:627–630

    CAS  PubMed  Google Scholar 

  8. Wilmanns C, Fan D, O’Brian CA et al (1992) Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil. Int J Cancer 52:98–104

    Article  CAS  PubMed  Google Scholar 

  9. March TH, Marron-Terada PG, Belinsky SA (2001) Refinement of an orthotopic lung cancer model in the nude rat. Vet Pathol 38:483–490

    Article  CAS  PubMed  Google Scholar 

  10. McLemore TL, Liu MC, Blacker PC et al (1987) Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res 47:5132–5140

    CAS  PubMed  Google Scholar 

  11. Li B, Torossian A, Li W et al (2011) A novel bioluminescence orthotopic mouse model for advanced lung cancer. Radiat Res 176:486–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mordant P, Loriot Y, Lahon B et al (2011) Bioluminescent orthotopic mouse models of human localized non-small cell lung cancer: feasibility and identification of circulating tumour cells. PLoS One 6:e26073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sato A, Klaunberg B, Tolwani R (2004) In vivo bioluminescence imaging. Comp Med 54:631–634

    CAS  PubMed  Google Scholar 

  14. Stacer AC, Nyati S, Moudgil P et al (2013) NanoLuc reporter for dual luciferase imaging in living animals. Mol Imaging 12:1–13

    PubMed  PubMed Central  Google Scholar 

  15. Progatzky F, Dallman MJ, Lo Celso C (2013) From seeing to believing: labeling strategies for in vivo cell-tracking experiments. Interface Focus 3:20130001

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  PubMed  Google Scholar 

  17. Filonov GS, Piatkevich KD, Ting LM et al (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shu X, Royant A, Lin MZ et al (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324:804–807

    Article  PubMed  PubMed Central  Google Scholar 

  19. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  CAS  PubMed  Google Scholar 

  20. Nagai T, Ibata K, Park ES et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  21. Doronina VA, Wu C, de Felipe P et al (2008) Site-specific release of nascent chains from ribosomes at a sense codon. Mol Cell Biol 28:4227–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tung YT, Huang PW, Chou YC et al (2015) Lung tumorigenesis induced by human vascular endothelial growth factor (hVEGF)-A165 overexpression in transgenic mice and amelioration of tumor formation by miR-16. Oncotarget 6:10222–10238

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen HL, Tung YT, Tsai CL et al (2014) Kefir improves fatty liver syndrome by inhibiting the lipogenesis pathway in leptin-deficient ob/ob knockout mice. Int J Obes 38:1172–1179

    Article  CAS  Google Scholar 

  24. Lai CW, Chen HL, Lin KY et al (2014) FTSJ2, a heat shock-inducible mitochondrial protein, suppresses cell invasion and migration. PLoS One 9:e90818

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tichauer KM, Holt RW, Samkoe KS et al (2012) Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers. J Vis Exp 65:e4050

    Google Scholar 

  26. Tung YT, Tsai TC, Kuo YH et al (2014) Comparison of solid-state-cultured and wood-cultured Antrodia camphorata in anti-inflammatory effects using NF-κB/luciferase inducible transgenic mice. Phytomedicine 21:1708–1716

    Article  CAS  PubMed  Google Scholar 

  27. Chen HL, Yen CC, Wang SM et al (2014) Aerosolized bovine lactoferrin reduces lung injury and fibrosis in mice exposed to hyperoxia. Biometals 27:1057–1068

    Article  CAS  PubMed  Google Scholar 

  28. Korpanty G, Smyth E, Carney DN (2011) Update on anti-angiogenic therapy in non-small cell lung cancer: are we making progress? J Thorac Dis 3:19–29

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17:215–220

    Article  CAS  PubMed  Google Scholar 

  30. Hua Z, Lv Q, Ye W et al (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1:e116

    Article  PubMed  PubMed Central  Google Scholar 

  31. Roccaro AM, Sacco A, Thompson B et al (2009) MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 113:6669–6680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mallick R, Patnaik SK, Yendamuri S (2010) MicroRNAs and lung cancer: biology and applications in diagnosis and prognosis. J Carcinog 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ke Y, Zhao W, Xiong J, Cao R (2013) Downregulation of miR-16 promotes growth and motility by targeting HDGF in non-small cell lung cancer cells. FEBS Lett 587:3153–3157

    Article  CAS  PubMed  Google Scholar 

  34. Jiguet-Jiglaire C, Cayol M, Mathieu S et al (2014) Noninvasive near-infrared fluorescent protein-based imaging of tumor progression and metastases in deep organs and intraosseous tissues. J Biomed Opt 19:16019

    Article  PubMed  Google Scholar 

  35. Lu Y, Darne CD, Tan IC et al (2013) In vivo imaging of orthotopic prostate cancer with far-red gene reporter fluorescence tomography and in vivo and ex vivo validation. J Biomed Opt 18:101305

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shcherbakova DM, Verkhusha VV (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10:751–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garbuzenko OB, Saad M, Pozharov VP et al (2010) Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc Natl Acad Sci U S A 107:10737–10742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng L, Feng L, Yuan H et al (2014) Development of a novel orthotopic non-small cell lung cancer model and therapeutic benefit of 2'-(2-bromohexadecanoyl)-docetaxel conjugate nanoparticles. Nanomedicine 10:1497–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan W, Xiao D, Yao K (2011) Combined bioluminescence and fluorescence imaging visualizing orthotopic lung adenocarcinoma xenograft in vivo. Acta Biochim Biophys Sin Shanghai 43:595–600

    Article  CAS  PubMed  Google Scholar 

  40. Matonick JP, Hammond J (2014) Hemostatic efficacy of EVARREST™, Fibrin Sealant Patch vs. TachoSil® in a heparinized swine spleen incision model. J Invest Surg 27:360–365

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants MOST-104-2313-B-005-043-MY3 from the Ministry of Science and Technology, ATU-105-S0508 from the Ministry of Education, Taiwan, under the Aiming for Top University plan, and TCVGH-NCHU1047610 from Rong-Hsing cooperation project. The authors would like to thank Dr. Hong-Lin Su for providing the pCAG-Neo-2A-Venus plasmid and Dr. Vladislav Verkhusha for the piRFP plasmid. We thank our colleagues (Drs. Tung-Chou Tsai and Zi-Lun Lai) in the Molecular Embryology and DNA Methylation Laboratory for their help with discussions and technical issues. And we also thank Miss Theresa Röhrig for critically reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Mu Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The animals used in this study were approved by the Institutional Animal Care and Use Committee (IACUC No. 103–97) of National Chung Hsing University, Taiwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, CW., Chen, HL., Yen, CC. et al. Using Dual Fluorescence Reporting Genes to Establish an In Vivo Imaging Model of Orthotopic Lung Adenocarcinoma in Mice. Mol Imaging Biol 18, 849–859 (2016). https://doi.org/10.1007/s11307-016-0967-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0967-4

Key words

Navigation