Skip to main content
Log in

Reproducibility of Contrast-Enhanced Ultrasound in Mice with Controlled Injection

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Sensitivity of contrast-enhanced ultrasound (CEUS) to microvascular flow modifications can be limited by intra-injection variability (injected dose, rate, volume).

Procedures

To evaluate the effect of injection variability on microvascular flow evaluation, CEUS was compared between controlled and manual injections where enhancement was assessed in vitro within a flow phantom, in normal murine kidney (N = 12) and in murine ectopic tumors (N = 10).

Results

For both in vitro and in vivo measurements in the renal cortex, controlled injections significantly improved reproducibility of functional parameter estimation. Their coefficient of variation (CV) in the renal cortex ranged from 4 to 19 % for controlled injection vs. 5 to 43 % for manual injections. For measurements in tumors, controlled injection only decreased the CV significantly for the mean transit time. In tumors, multiple injections of contrast agent with a 15-min delay between each were shown to strongly modify contrast uptake by facilitating penetration of microbubbles.

Conclusion

Improved reproducibility of CEUS assessments in murine models should provide more robust quantification of flow parameters and more sensitive evaluation of tumor modifications in therapeutic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Helminger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and PO2 gradients in solid tumors in vivo: high-resolution measurments reveal a lack of correlation. Nature 3:177–182

    Google Scholar 

  2. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–14

    Article  CAS  PubMed  Google Scholar 

  3. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Methods 1:27–31

    CAS  Google Scholar 

  4. Blankstein R, Shturman LD, Rogers IS et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54:1072–84

    Article  PubMed  Google Scholar 

  5. Dietrich C, Averkiou M, Correas J et al (2012) An EFSUMB Introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for quantification of tumour perfusion. Ultraschall Med 33:344–351

    Article  CAS  PubMed  Google Scholar 

  6. Guibal A, Taillade L, Mulé S et al (2010) Noninvasive contrast-enhanced US quantitative assessment of tumor microcirculation in a murine model: effect of discontinuing Anti-VEGF therapy. Radiology 254:420–429

    Article  PubMed  Google Scholar 

  7. Lamuraglia M, Bridal SL, Santin M et al (2010) Clinical relevance of contrast-enhanced ultrasound in monitoring anti-angiogenic therapy of cancer: current status and perspectives. Crit Rev Oncol Hematol 73:202–12

    Article  PubMed  Google Scholar 

  8. Leen E, Averkiou M, Arditi M et al (2012) Dynamic contrast enhanced ultrasound assessment of the vascular effects of novel therapeutics in early stage trials. Eur Radiol 22:1442–50

    Article  PubMed  Google Scholar 

  9. Quaia E (2007) Microbubble ultrasound contrast agents: an update. Eur Radiol 17:1995–2008

    Article  PubMed  Google Scholar 

  10. Payen T, Coron A, Lamuraglia M et al (2013) Echo-power estimation from log-compressed video data in dynamic contrast-enhanced ultrasound imaging. Ultrasound Med Biol 39:1826–37

    Article  PubMed  Google Scholar 

  11. Strouthos C, Lampaskis M, Sboros V et al (2010) Indicator dilution models for the quantification of microvascular blood flow with bolus administration of ultrasound contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 57:1296–1310

    Article  PubMed  Google Scholar 

  12. Rognin N, Arditi M, Mercier L et al (2010) Parametric imaging for characterizing focal liver lesions in contrast-enhanced ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 57:2503–11

    Article  PubMed  Google Scholar 

  13. Piscaglia F, Nolsøe C, Dietrich CF et al (2012) The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 33:33–59

    Article  CAS  PubMed  Google Scholar 

  14. Stapleton S, Goodman H, Zhou Y-Q et al (2009) Acoustic and kinetic behaviour of definity in mice exposed to high frequency ultrasound. Ultrasound Med Biol 35:296–307

    Article  PubMed  Google Scholar 

  15. Barrack T, Stride E (2009) Microbubble destruction during intravenous administration: a preliminary study. Ultrasound Med Biol 35:515–22

    Article  PubMed  Google Scholar 

  16. Talu E, Powell RL, Longo ML, Dayton PA (2008) Needle size and injection rate impact microbubble contrast agent population. Ultrasound Med Biol 34:1182–5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hyvelin J, Tardy I, Arbogast C et al (2013) Use of ultrasound contrast agent microbubbles in preclinical research. Invest Radiol 48:570–583

    Article  CAS  PubMed  Google Scholar 

  18. Schneider M (1999) Characteristics of SonoVuetrade mark. Echocardiography 16:743–746

    Article  PubMed  Google Scholar 

  19. Milia AF, Gross V, Plehm R et al (2001) Normal blood pressure and renal function in mice lacking the bradykinin B2 receptor. Hypertension 37:1473–1479

    Article  CAS  PubMed  Google Scholar 

  20. Schneider M (1999) SonoVue, a new ultrasound contrast agent. Eur Radiol 9:347–348

    Article  Google Scholar 

  21. Barrois G, Coron A, Payen T et al (2013) A multiplicative model for improving microvascular flow estimation in dynamic theory and experimental validation. IEEE Trans Ultrason Ferroelectr Freq Control 60:2284–2294

    Article  PubMed  Google Scholar 

  22. De Jong N, Bouakaz A, Frinking P (2002) Basic acoustic properties of microbubbles. Echocardiography 19:229–40

    Article  PubMed  Google Scholar 

  23. Dayton PA, Allen JS, Ferrara KW (2002) The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am 112:2183–92

    Article  CAS  PubMed  Google Scholar 

  24. Groce J-M, Arditi M, Schneider M (2000) Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVue. Invest Radiol 35:661–671

    Article  Google Scholar 

  25. Palmowski M, Lederle W, Gaetjens J et al (2010) Comparison of conventional time-intensity curves vs. maximum intensity over time for post-processing of dynamic contrast-enhanced ultrasound. Eur J Radiol 75:149–153

    Article  Google Scholar 

  26. Gauthier M, Pitre-Champagnat S, Tabarout F et al (2012) Impact of the arterial input function on microvascularization parameter measurements using dynamic contrast-enhanced ultrasonography. World J Radiol 4:291

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–70

    Article  CAS  PubMed  Google Scholar 

  28. Skrok J (2007) Markedly increased signal enhancement after the second injection of SonoVue® compared to the first—a quantitative normal volunteer study. 12th Eur. Symp. Ultrasound Contrast Imaging Rotterdam

  29. Gauthier TP, Averkiou MA, Leen E (2011) Perfusion quantification using dynamic contrast-enhanced ultrasound: the impact of dynamic range and gain on time-intensity curves. Ultrasonics 51:102–106

    Article  CAS  PubMed  Google Scholar 

  30. Hudson JM, Karshafian R, Burns PN (2009) Quantification of flow using ultrasound and microbubbles: a disruption replenishment model based on physical principles. Ultrasound Med Biol 35:2007–20

    Article  PubMed  Google Scholar 

  31. Averkiou M, Lampaskis M, Kyriakopoulou K et al (2010) Quantification of tumor microvascularity with respiratory gated contrast enhanced ultrasound for monitoring therapy. Ultrasound Med Biol 36:68–77

    Article  PubMed  Google Scholar 

  32. Wei K, Jayaweera AR, Firoozan S et al (1998) Quantification of myocardial blood flow with ultrasound- induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Bracco Suisse SA for their help in the implementation of the controlled injection system. The authors also thank the CEF (Centre d’Explorations Fonctionnelles, Cordeliers’ Research Center) for their technical support and help with animals care.

We gratefully acknowledge support from the French research program Plan Cancer 2009–2013 (project NABUCCO) and the Fondation Recheche Médicale (Recherche soutenue par le FRM DBS20131128436). This work was partly funded by the French program “Investissement d’Avenir” run by the “Agence Nationale pour la Recherche”, and grant Infrastructure d’avenir en Biologie Santé—ANR-11-INBS-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Dizeux.

Ethics declarations

Human and Animal Rights and Informed Consent

All experiments were conducted in accordance with the institutional guidelines and the recommendations for the care and use of laboratory animals established by the French Ministry of Agriculture.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dizeux, A., Payen, T., Barrois, G. et al. Reproducibility of Contrast-Enhanced Ultrasound in Mice with Controlled Injection. Mol Imaging Biol 18, 651–658 (2016). https://doi.org/10.1007/s11307-016-0952-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0952-y

Key words

Navigation