Skip to main content
Log in

Measuring Extracellular pH in a Lung Fibrosis Model with acidoCEST MRI

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

A feed-forward loop involving lactic acid production may potentially occur during the formation of idiopathic pulmonary fibrosis. To provide evidence for this feed-forward loop, we used acidoCEST MRI to measure the extracellular pH (pHe), while also measuring percent uptake of the contrast agent, lesion size, and the apparent diffusion coefficient (ADC).

Procedures

We developed a respiration-gated version of acidoCEST MRI to improve the measurement of pHe and percent uptake in lesions. We also used T2-weighted MRI to measure lesion volumes and diffusion-weighted MRI to measure ADC.

Results

The longitudinal changes in average pHe and % uptake of the contrast agent were inversely related to reduction in lung lesion volume. The average ADC did not change during the time frame of the study.

Conclusions

The increase in pHe during the reduction in lesion volume indicates a role for lactic acid in the proposed feed-forward loop of IPF

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nathan SD, Shlobin OA, Weir N et al (2011) Long-term course and prognosis of idiopathic pulmonary fibrosis in the new millennium. Chest 140:221–229

    Article  PubMed  Google Scholar 

  2. Richeldi L (2012) Assessing the treatment effect from multiple trials in idiopathic pulmonary fibrosis. Eur Respir Rev 21:147–151

    Article  PubMed  Google Scholar 

  3. Ley B, Collard HR, King TE Jr (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183:431–440

    Article  PubMed  Google Scholar 

  4. Sime PJ, Samstrand B, Xing Z et al (1997) Adenovirus-mediated gene transfer of the proteoglycan biglycan induces fibroblastic responses in the lung. Chest 111:137S

    Article  CAS  PubMed  Google Scholar 

  5. Tarantal AF, Chen H, Shi TT et al (2010) Overexpression of transforming growth factor-beta1 in fetal monkey lung results in pulmonary fibrosis. Eur Respir J 36:907–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kottmann RM, Kulkami AA, Smolnycki KA et al (2012) Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-beta. Am J Respir Crit Care Med 186:740–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chen LQ, Howison CM, Jeffery JJ, et al. (2013) Evaluations of extracellular pH within In Vivo Tumors Using acidoCEST MRI. Magn Reson Med, doi:10.1002/mrm.25053

  8. Aime S, Calabi L, Biondi L et al (2005) Iopamidol: exploring the potential use of a well-established x ray contrast agent for MRI. Magn Reson Imaging 53:830–834

    CAS  Google Scholar 

  9. Aime S, Barge A, Delli Castelli D et al (2002) Paramagnetic Lanthanide (III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47:639–48

    Article  CAS  PubMed  Google Scholar 

  10. Ward KM, Balaban RS (2000) Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 44:799–802

    Article  CAS  PubMed  Google Scholar 

  11. Liu G, Li Y, Sheth VR, Pagel MD (2012) Imaging in vivo extracellular pH with a single paramagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. Mol Imaging 11:47–57

    PubMed  Google Scholar 

  12. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). Magn Reson Imaging 143:79–87

    Article  CAS  Google Scholar 

  13. Grad J, Bryant RG (1990) Nuclear magnetic cross-relaxation spectroscopy. JMR 90:1–8

    CAS  Google Scholar 

  14. Liepinsh E, Otting G (1996) Proton exchange rates from amino acid side chains—implications for image contrast. Magn Reson Med 35:30–42

    Article  CAS  PubMed  Google Scholar 

  15. Sheth VR, Li Y, Chen LQ et al (2012) Measuring in vivo tumor pHe with CEST-FISP MRI. Magn Reson Med 67:760–768

    Article  PubMed Central  PubMed  Google Scholar 

  16. Longo DL, Busato A, Lanzardo S et al (2013) Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 70:859–864

    Article  CAS  PubMed  Google Scholar 

  17. Sheth VR, van Heeckeren RC, Wilson AG et al (2008) Monitoring infection and inflammation in murine models of cystic fibrosis with magnetic resonance imaging. Magn Reson Imaging 28:527–532

    Article  Google Scholar 

  18. Sheth VR, Liu G, Li Y, Pagel MD (2012) Improved pH measurements with a single PARACEST MRI contrast agent. Contrast Media Mol Imaging 7:26–34

    Article  CAS  PubMed  Google Scholar 

  19. Garbow J, Dugas JP, Conradi MS (2003) Respiratory gating for MRI and MRS in rodents. Third IEEE Symp Bioinform Bioeng 126–129

  20. Heijman E, de Graaf W, Niessen P et al (2007) Comparison between prospective and retrospective triggering for mouse cardiac MRI. NBR 20:439–447

    CAS  Google Scholar 

  21. Lakatos HF, Burgess HA, Thatcher TH et al (2006) Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation. Exp Lung Res 32:181–99

    Article  CAS  PubMed  Google Scholar 

  22. Kulkarni AA, Thatcher TH, Hsiao HM et al (2013) The triterpenoid CDDO-Me inhibits bleomycin-induced lung inflammation and fibrosis. PLoS One 8:e63798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Woessner DE, Zhang S, Merritt ME, Sherry AD (2005) Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 53:790–799

    Article  CAS  PubMed  Google Scholar 

  24. Randtke EA, Chen LQ, Corrales LR, Pagel MD (2013) The Hanes-Woolf linear QUESP method improves measurements of fast chemical exchange rates with CEST MRI. Magn Reson Med. doi:10.1002/mrm.24792

  25. Gregory RB, Crabo L, Percy AJ, Rosenburg A (1983) Water catalysis of peptide hydrogen isotope exchange. Biochemistry 22:910–917

    Article  CAS  PubMed  Google Scholar 

  26. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging physical principles and sequence design. Wiley-Liss, New York, NY, p 349

    Google Scholar 

  27. Schnieder CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  28. Caravan P, Yang Y, Zachariah R et al (2013) Molecular magnetic resonance imaging of pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 49:1120–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Shaghaghi H, Kadlecek S, Deshpande C et al (2014) Metabolic spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-13C pyruvate. NBM 27:929–947

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Better Than Ever Program, R01CA167183-01 and P50 CA95060. KMJ acknowledges support from the NIH Cardiovascular Training Grant T32HL007955 and T32HL066988 and the Parker B. Francis Foundation (RMK).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Pagel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, K.M., Randtke, E.A., Howison, C.M. et al. Measuring Extracellular pH in a Lung Fibrosis Model with acidoCEST MRI. Mol Imaging Biol 17, 177–184 (2015). https://doi.org/10.1007/s11307-014-0784-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0784-6

Key words

Navigation