Skip to main content

Advertisement

Log in

Combination Treatment with Theranostic Nanoparticles for Glioblastoma Sensitization to TMZ

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Tumor resistance to chemotherapeutic drugs is one of the major obstacles in the treatment of glioblastoma multiforme (GBM). In this study, we attempted to modulate tumor response to chemotherapy by combination treatment that included experimental (small interference RNA (siRNA), chlorotoxin) and conventional (temozolomide, TMZ) therapeutics.

Procedures

siRNA therapy was used to silence O6-methylguanine methyltransferase (MGMT), a key factor in brain tumor resistance to TMZ. For targeting of tumor cells, we used chlorotoxin (CTX), a peptide with antitumoral properties. siRNA and CTX were conjugated to iron oxide nanoparticles (NP) that served as the drug carrier and allowed the means to monitor the changes in tumor volume by magnetic resonance imaging (MRI).

Results

Theranostic nanoparticles (termed CTX-NP-siMGMT) were internalized by T98G glioblastoma cells in vitro leading to enhancement of TMZ toxicity. Combination treatment of mice bearing orthotopic tumors with CTX-NP-siMGMT and TMZ led to significant retardation of tumor growth, which was monitored by MRI.

Conclusions

While our results demonstrate that siRNA delivery by targeted nanoparticles resulted in modulating tumor response to chemotherapy in GBM, they also point to a significant contribution of CTX to tumor cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  3. Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6:2585–2597

    PubMed  CAS  Google Scholar 

  4. Hegi ME, Diserens AC, Godard S et al (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10:1871–1874

    Article  PubMed  CAS  Google Scholar 

  5. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  PubMed  CAS  Google Scholar 

  6. Pegg AE (1990) Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 50:6119–6129

    PubMed  CAS  Google Scholar 

  7. Dumenco LL, Allay E, Norton K, Gerson SL (1993) The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science 259:219–222

    Article  PubMed  CAS  Google Scholar 

  8. Kaina B, Fritz G, Mitra S, Coquerelle T (1991) Transfection and expression of human O6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis 12:1857–1867

    Article  PubMed  CAS  Google Scholar 

  9. Pistollato F, Abbadi S, Rampazzo E et al (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28:851–862

    Article  PubMed  CAS  Google Scholar 

  10. Hegi ME, Liu L, Herman JG et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26:4189–4199

    Article  PubMed  CAS  Google Scholar 

  11. Paz MF, Yaya-Tur R, Rojas-Marcos I et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10:4933–4938

    Article  PubMed  CAS  Google Scholar 

  12. Weller M, Stupp R, Reifenberger G et al (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51

    Article  PubMed  CAS  Google Scholar 

  13. Yoshino A, Ogino A, Yachi K et al (2010) Gene expression profiling predicts response to temozolomide in malignant gliomas. Int J Oncol 36:1367–1377

    Article  PubMed  CAS  Google Scholar 

  14. Chinnasamy N, Rafferty JA, Hickson I et al (1997) O6-benzylguanine potentiates the in vivo toxicity and clastogenicity of temozolomide and BCNU in mouse bone marrow. Blood 89:1566–1573

    PubMed  CAS  Google Scholar 

  15. Fairbairn LJ, Watson AJ, Rafferty JA et al (1995) O6-benzylguanine increases the sensitivity of human primary bone marrow cells to the cytotoxic effects of temozolomide. Exp Hematol 23:112–116

    PubMed  CAS  Google Scholar 

  16. Kato T, Natsume A, Toda H et al (2010) Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther 17:1363–1371

    Article  PubMed  CAS  Google Scholar 

  17. Kumar M, Yigit M, Dai G et al (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Medarova Z, Pham W, Farrar C et al (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  PubMed  CAS  Google Scholar 

  19. Kumar M, Medarova Z, Pantazopoulos P et al (2010) Novel membrane-permeable contrast agent for brain tumor detection by MRI. Magn Reson Med 63:617–624

    Article  PubMed  CAS  Google Scholar 

  20. DeBin JA, Strichartz GR (1991) Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon 29:1403–1408

    Article  PubMed  CAS  Google Scholar 

  21. Lyons SA, O'Neal J, Sontheimer H (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39:162–173

    Article  PubMed  Google Scholar 

  22. Deshane J, Garner CC, Sontheimer H (2003) Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem 278:4135–4144

    Article  PubMed  CAS  Google Scholar 

  23. Veiseh M, Gabikian P, Bahrami SB et al (2007) Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 67:6882–6888

    Article  PubMed  CAS  Google Scholar 

  24. Mamelak AN, Rosenfeld S, Bucholz R et al (2006) Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 24:3644–3650

    Article  PubMed  CAS  Google Scholar 

  25. Shen S, Khazaeli MB, Gillespie GY, Alvarez VL (2005) Radiation dosimetry of 131I-chlorotoxin for targeted radiotherapy in glioma-bearing mice. J Neurooncol 71:113–119

    Article  PubMed  CAS  Google Scholar 

  26. Soroceanu L, Gillespie Y, Khazaeli MB, Sontheimer H (1998) Use of chlorotoxin for targeting of primary brain tumors. Cancer Res 58:4871–4879

    PubMed  CAS  Google Scholar 

  27. Kievit FM, Veiseh O, Fang C et al (2010) Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4:4587–4594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Lee MJ, Veiseh O, Bhattarai N et al (2010) Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. PLoS One 5:e9536

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun C, Fang C, Stephen Z et al (2008) Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine 3:495–505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Veiseh O, Kievit FM, Fang C et al (2010) Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31:8032–8042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Veiseh O, Sun C, Fang C et al (2009) Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. Cancer Res 69:6200–6207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Veiseh O, Sun C, Gunn J et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5:1003–1008

    Article  PubMed  CAS  Google Scholar 

  33. Fu YJ, Yin LT, Liang AH et al (2007) Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. Neurosci Lett 412:62–67

    Article  PubMed  CAS  Google Scholar 

  34. McFerrin MB, Sontheimer H (2006) A role for ion channels in glioma cell invasion. Neuron Glia Biol 2:39–49

    Article  PubMed  PubMed Central  Google Scholar 

  35. Watson AJ, Margison GP (1999) O (6)-Alkylguanine-DNA Alkyltransferase Assay. Methods Mol Med 28:167–178

    PubMed  CAS  Google Scholar 

  36. Carlson BL, Pokorny JL, Schroeder MA, Sarkaria JN (2011) Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr Protoc Pharmacol Chapter 14:Unit 14 16.

  37. Akinc A, Thomas M, Klibanov A, Lanfer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  PubMed  CAS  Google Scholar 

  38. Wang P, Yigit MV, Ran C et al (2012) A theranostic small interfering RNA nanoprobe protects pancreatic islet grafts from adoptively transferred immune rejection. Diabetes 61:3247–3254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Wang P, Yigit M, Medarova Z et al (2011) Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60:565–571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Chahal M, Xu Y, Lesniak D et al (2010) MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro Oncol 12:822–833

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Cordier D, Forrer F, Kneifel S et al (2010) Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGA-substance P—results from a phase I study. J Neurooncol 100:129–136

    Article  PubMed  CAS  Google Scholar 

  43. Jenkinson MD, Smith TS, Haylock B et al (2010) Phase II trial of intratumoral BCNU injection and radiotherapy on untreated adult malignant glioma. J Neurooncol 99:103–113

    Article  PubMed  CAS  Google Scholar 

  44. Oshiro S, Tsugu H, Komatsu F et al (2006) Evaluation of intratumoral administration of tumor necrosis factor-alpha in patients with malignant glioma. Anticancer Res 26:4027–4032

    PubMed  CAS  Google Scholar 

  45. Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574

    Article  PubMed  CAS  Google Scholar 

  46. Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34:322–333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Stein GH (1979) T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol 99:43–54

    Article  PubMed  CAS  Google Scholar 

  48. Yin D, Xie D, Hofmann WK et al (2003) DNA repair gene O6-methylguanine-DNA methyltransferase: promoter hypermethylation associated with decreased expression and G:C to A:T mutations of p53 in brain tumors. Mol Carcinog 36:23–31

    Article  PubMed  CAS  Google Scholar 

  49. Kesavan K, Ratliff J, Johnson EW et al (2010) Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. J Biol Chem 285:4366–4374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by T32CA009502 (PI Anna Moore).

Conflict of Interest Statement

Authors declare no potential conflicts of interest relevant to this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Moore.

Additional information

Byunghee Yoo and Marytheresa A. Ifediba contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1,433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, B., Ifediba, M.A., Ghosh, S. et al. Combination Treatment with Theranostic Nanoparticles for Glioblastoma Sensitization to TMZ. Mol Imaging Biol 16, 680–689 (2014). https://doi.org/10.1007/s11307-014-0734-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0734-3

Key words

Navigation