Skip to main content
Log in

1H–31P Soft-HSQC Pulse Sequence Specifically for Detecting Phosphomono- and Diesters in Biological Samples

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Phosphomono- and diesters (PME and PDE) are important metabolites that are potential biomarkers for a number of cancers. We designed a new NMR pulse sequence, i.e., 1H–31P soft-heteronuclear single quantum correlation (HSQC), specifically for noninvasively detecting PME and PDE in biological samples.

Procedure

The nonselective 1H refocusing π pulses in the conventional heteronuclear single quantum correlation pulse sequence are replaced by selective π pulses. When the selective pulses are offset on the CH2O resonances, the homonuclear couplings between the NCH2 and CH2O protons are effectively removed, and the spectrum of PME and PDE is significantly enhanced.

Results

The sensitivity of this pulse sequence has been demonstrated with milk and mouse brain samples. A soft-HSQC spectrum, where only PME and PDE signals appear, can be recorded from these biological samples in minutes with remarkably high signal-to-noise ratio.

Conclusion

This pulse sequence provides a new and quick method for in vivo studies of phosphorus metabolite in the human brain and other tissues for medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12:413–439

    Article  PubMed  CAS  Google Scholar 

  2. Glunde K, Ackerstaff E, Mori N et al (2006) Choline phospholipid metabolism in cancer: consequences for molecular pharmaceutical interventions. Mol Pharm 3:496–506

    Article  PubMed  CAS  Google Scholar 

  3. Zektzer AS, Swanson MG, Jarso S et al (2005) Improved signal to noise in high-resolution magic angle spinning total correlation spectroscopy studies of prostate tissues using rotor-synchronized adiabatic pulses. Magn Reson Med 53:41–48

    Article  PubMed  Google Scholar 

  4. Swanson MG, Keshari KR, Tabatabai ZL et al (2008) (2008) Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med 60:33–40

    Article  PubMed  CAS  Google Scholar 

  5. Klomp DWJ, Wijnen JP, Scheenen TWJ et al (2008) Efficient 1H to 31P polarization transfer on a clinical 3T MR system. Magn Reson Med 60:1298–1305

    Article  PubMed  CAS  Google Scholar 

  6. Wokrina T, Ulrich M, Weber-Fahr W et al (2008) 3D RINEPT {1H–31P CSI: a feasible approach for the study of membrane turnover in the human brain. Magn Reson Med 59:999–1004

    Article  PubMed  Google Scholar 

  7. Wijnen JP, Scheenen TWJ, Klomp DWJ et al (2010) 31P magnetic resonance spectroscopic imaging with polarization transfer of phosphomono- and diesters at 3T in the human brain: relation with age and spatial differences. NMR Biomed 23:968–976

    Article  PubMed  CAS  Google Scholar 

  8. Mao XA (2012) Improve the selectively refocused INEPT pulse sequence for detecting phosphomonoesters and phosphodiesters. Magn Reson Med 68:332–338

    Article  PubMed  CAS  Google Scholar 

  9. Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189

    Article  CAS  Google Scholar 

  10. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  PubMed  CAS  Google Scholar 

  11. Mao JZ, Jiang L, Jiang B et al (2010) (2010) 1H–14N HSQC detection of choline-containing compounds in solutions. J Magn Reson 206:157–160

    Article  PubMed  CAS  Google Scholar 

  12. Mao JZ, Jiang L, Jiang B et al (2010) A selective NMR method for detecting choline containing compounds in liver tissue: the 1H–14N HSQC experiment. J Am Chem Soc 13:17349–17351

    Article  Google Scholar 

  13. Mao XA, Li N, Mao JZ et al (2012) Fast detection of choline containing metabolites in liver using 2D 1H–14N three-bond correlation (HN3BC) spectroscopy. J Magn Reson 214:352–359

    Article  PubMed  CAS  Google Scholar 

  14. Gamcsik MP, Constantinidis I, Glickson JD (1991) In vivo 14N nuclear magnetic resonance spectroscopy of tumours-detection of ammonium and trimethylamine metabolites in the murine radiation-induced fibrosarcoma-1. Cancer Res 51:3378–3383

    PubMed  CAS  Google Scholar 

  15. Mancini L, Payne GS, Leach MO (2003) Comparison of polarization transfer sequences for enhancement of signals in clinical 31P MRS studies. Magn Reson Med 50:578–588

    Article  PubMed  Google Scholar 

  16. Loening NM, Chamberlin AM, Zepeda AG et al (2005) Quantification of phosphocholine and glycerophosphocholine with 31P edited 1H NMR spectroscopy. NMR Biomed 18:413–420

    Article  PubMed  CAS  Google Scholar 

  17. Mohebbi A, Gonen O (1996) Recovery of heteronuclear coherence-transfer efficiency lossed due to 1H–1H J coupling in proton to phosphorus RINEPT. J Magn Reson Ser A 123:237–241

    Article  CAS  Google Scholar 

  18. US Department of Agriculture (2004) USDS database for the choline content of common foods. NDB number #01077, URL: http://www.nal.usda.gov/fnic/foodcomp

  19. Hu FY, Furihata K, Ito-Ishida M et al (2004) Nondestructive observation of bovine milk by NMR spectroscopy: analysis of existing states of compounds and detection of new compounds. J Agric Food Chem 52:4969–4974

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (nos. 21120102038, 21173257, 20921004, and 21005085) and the National Major Basic Research Program of China (no. 2009CB918603) for their financial support.

Conflict of Interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-an Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Xa., Jiang, B., Jiang, L. et al. 1H–31P Soft-HSQC Pulse Sequence Specifically for Detecting Phosphomono- and Diesters in Biological Samples. Mol Imaging Biol 15, 245–249 (2013). https://doi.org/10.1007/s11307-012-0607-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0607-6

Key words

Navigation