Skip to main content
Log in

MRI Tracking of Macrophages Labeled with Glucan Particles Entrapping a Water Insoluble Paramagnetic Gd-Based Agent

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study is aimed at demonstrating the in vivo potential of Gd(III)-loaded glucan particles (Gd-GPs) as magnetic resonance imaging (MRI)-positive agents for labeling and tracking phagocytic cells.

Procedure

GPs were obtained from Saccharomyces cerevisae and loaded with the water-insoluble complex Gd-DOTAMA(C18)2. The uptake kinetics of Gd-GPs by murine macrophages was studied in vitro and the internalization mechanism was assessed by competition assays. The in vivo performance of Gd-GPs was tested at 7.05 T on a mouse model of acute liver inflammation.

Results

The minimum number of Gd-GPs-labeled J774.A1 macrophages detected in vitro by MRI was ca. 300 cells/μl of agar, which is the lowest number ever reported for cells labeled with a positive T1 agent. Intravenous injection of macrophages labeled with Gd-GPs in a mouse model of liver inflammation enabled the MRI visualization of the cellular infiltration in the diseased area.

Conclusions

Gd-GPs represent a promising platform for tracking macrophages by MRI as a T1 alternative to the golden standard T2-based iron oxide particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Gd-GPs:

Gd-loaded glucan particles

GPs:

Glucan particles

Rho:

GPs rhodamine-loaded glucan particles

PBS:

Phosphate-buffered saline

ALT:

Alanine amino transferase

USPIO:

Ultra-small superparamagnetic iron oxide particles

SPIO:

Superparamagnetic iron oxide particles

MPIO:

Micrometer-sized iron oxide particles

siRNA:

Small interfering RNA

References

  1. Lu CW, Hung Y, Hsiao JK et al (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7:149–154

    Article  PubMed  CAS  Google Scholar 

  2. Shapiro EM, Gonzalez-Perez O, Manuel Garcia-Verdugo J et al (2006) Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. NeuroImage 32:1150–1157

    Article  PubMed  Google Scholar 

  3. Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223

    Article  PubMed  CAS  Google Scholar 

  4. Tang KS, Shapiro EM (2011) Enhanced magnetic cell labeling efficiency using –NH2 coated MPIOs. Magn Reson Med 65:1564–1569

    Article  PubMed  CAS  Google Scholar 

  5. Giesel FL, Stroick M, Griebe M et al (2006) Gadofluorine uptake in stem cells as a new magnetic resonance imaging tracking method: an in vitro and in vivo study. Invest Radiol 41:868–873

    Article  PubMed  CAS  Google Scholar 

  6. Geninatti Crich S, Biancone L, Cantaluppi V et al (2004) Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 51:938–944

    Article  Google Scholar 

  7. Biancone L, Geninatti Crich S, Cantaluppi V et al (2007) Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed 20:40–48

    Article  PubMed  Google Scholar 

  8. Menchise V, Digilio G, Gianolio E et al (2011) In vivo labeling of B16 melanoma tumor xenograft with a thiol-reactive gadolinium based MRI contrast agent. Mol Pharm 8:1750–1756

    Article  PubMed  CAS  Google Scholar 

  9. Hedlund A, Ahrén M, Gustafsson H et al (2011) Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement. Int J Nanomedicine 6:3233–3240

    PubMed  CAS  Google Scholar 

  10. Guenoun J, Koning GA, Doeswijk G et al (2012) Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transplant 21:191–205

    PubMed  Google Scholar 

  11. Ribot EJ, Miraux S, Konsman JP et al (2011) In vivo MR tracking of therapeutic microglia to a human glioma model. NMR Biomed 24:1361–1368

    Article  PubMed  Google Scholar 

  12. Tachibana Y, Enmi J, Mahara A et al (2010) Design and characterization of a polymeric MRI contrast agent based on PVA for in vivo living-cell tracking. Contrast Media Mol Imaging 5:309–317

    Article  PubMed  CAS  Google Scholar 

  13. Tran LA, Krishnamurthy R, Muthupillai R et al (2010) Gadonanotubes as magnetic nanolabels for stem cell detection. Biomaterials 31:9482–9491

    Article  PubMed  CAS  Google Scholar 

  14. Tseng CL, Shih IL, Stobinski L, Lin FH (2010) Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 31:5427–5435

    Article  PubMed  CAS  Google Scholar 

  15. Fizet J, Rivière C, Bridot JL et al (2009) Multi-luminescent hybrid gadolinium oxide nanoparticles as potential cell labeling. J Nanosci Nanotechnol 9:5717–5725

    Article  PubMed  CAS  Google Scholar 

  16. Nolte IS, Gungor S, Erber R et al (2008) In vitro labeling of glioma cells with gadofluorine M enhances T1 visibility without affecting glioma cell growth or motility. Magn Reson Med 59:1014–1020

    Article  PubMed  CAS  Google Scholar 

  17. New EJ, Parker D, Smith DG, Walton JW (2010) Development of responsive lanthanide probes for cellular applications. Cur Opinion Chem Biol 14:238–246

    Article  CAS  Google Scholar 

  18. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  19. Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987

    Article  PubMed  CAS  Google Scholar 

  20. Ottobrini L, Martelli C, Trabattoni DL et al (2011) In vivo imaging of immune cell trafficking in cancer. Eur J Nucl Med Mol Imaging 38:949–968

    Article  PubMed  Google Scholar 

  21. Aouadi M, Tesz GJ, Nicoloro SM et al (2009) Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458:1180–1184

    Article  PubMed  CAS  Google Scholar 

  22. Soto ER, Caras AC, Kut LC, et al. (2012) Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv (in press)

  23. Soto E, Kim YS, Lee J et al (2010) Glucan particle encapsulated rifampicin for targeted delivery to macrophages. Polymers 2:681–689

    Article  CAS  Google Scholar 

  24. Soto ER, Ostroff GR (2008) Characterization of multilayered nanoparticles inside yeast cell wall particles for DNA delivery. Bioconjugate Chem 19:840–848

    Article  CAS  Google Scholar 

  25. Tesz GJ, Aouadi M, Prot M et al (2011) Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem J 436:351–362

    Article  PubMed  CAS  Google Scholar 

  26. Soto E, Ostroff G (2011) Use of beta-1,3-d-glucans for drug delivery applications. In: Vetvicka V, Novak M (eds) Biology and chemistry of beta glucan (volume 1): beta glucans-mechanisms of action. Bentham Press, Oak Park, p 82

    Google Scholar 

  27. Figueiredo S, Moreira JN, Geraldes CF et al (2011) Yeast cell wall particles: a promising class of nature-inspired microcarriers for multimodal imaging. Chem Commun 47:10635–10637

    Article  CAS  Google Scholar 

  28. Brown GD, Gordon S (2001) Immune recognition: a new receptor for β-glucans. Nature 413:36–37

    Article  PubMed  CAS  Google Scholar 

  29. Chan GC, Chan WK, Sze DM (2009) The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2:25–35

    Article  PubMed  Google Scholar 

  30. Huang H, Ostroff GR, Lee CK et al (2009) Distinct patterns of dendritic cell cytokine release stimulated by fungal beta-glucans and toll-like receptor agonists. Infect Immun 77:1774–1781

    Article  PubMed  CAS  Google Scholar 

  31. Huang H, Ostroff GR, Lee CK et al (2012) Relative contributions of Dectin-1 and complement to immune responses to particulate β-glucans. J Immunol 189:312–317

    Article  PubMed  CAS  Google Scholar 

  32. Vu-Quang H, Muthiah M, Lee HJ et al (2012) Immune cell-specific delivery of beta-glucan-coated iron oxide nanoparticles for diagnosing liver metastasis by MR imaging. Carbohydr Polym 87:1159–1168

    Article  CAS  Google Scholar 

  33. Anelli PL, Lattuada L, Lorusso V et al (2001) Mixed micelles containing lipophilic gadolinium complexes as MRA contrast agents. Magn Reson Mater Phys Biol Med 12:114–120

    CAS  Google Scholar 

  34. Gianolio E, Arena F, Strijkers GJ et al (2011) Photochemical activation of endosomal escape of MRI-Gd-agents in tumor cells. Magn Reson Med 65:212–219

    Article  PubMed  CAS  Google Scholar 

  35. Domenicali M, Caraceni P, Giannone F et al (2009) A novel model of CCl4-induced cirrhosis with ascites in the mouse. J Hepatol 51:991–999

    Article  PubMed  CAS  Google Scholar 

  36. Ramachandran R, Kakar S (2009) Histological patterns in drug-induced liver disease. J Clin Pathol 62:481–492

    Article  PubMed  CAS  Google Scholar 

  37. Becker A, Neumeier R, Heidrich C et al (1986) Cell surface glycoproteins of hepatocytes and hepatoma cells identified by monoclonal antibodies. Biol Chem Hoppe-Seyler 367:681–688

    Article  PubMed  CAS  Google Scholar 

  38. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  PubMed  CAS  Google Scholar 

  39. Terreno E, Delli Castelli D, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110:3019–3042

    Article  PubMed  CAS  Google Scholar 

  40. Terreno E, Geninatti Crich S, Belfiore S et al (2006) Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 55:491–497

    Article  PubMed  CAS  Google Scholar 

  41. Huang H, Ostroff GR, Lee CK et al (2011) Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded β-glucan particles. MBio 2:e00164–10

    Google Scholar 

  42. Goodridge HS, Underhill DM, Touret N (2012) Mechanisms of Fc receptor and Dectin-1 activation for phagocytosis. Traffic 13:1062–1071

    Article  PubMed  CAS  Google Scholar 

  43. Schneider B, Schueller C, Utermoehlen O, Haas A (2007) Lipid microdomain-dependent macropinocytosis determines compartmentation of Afipia felis. Traffic 8:226–240

    Article  PubMed  CAS  Google Scholar 

  44. Scherbart AM, Langer J, Bushmelev A et al (2011) Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part Fibre Toxicol 8, art.31

    Google Scholar 

  45. Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89:836–843

    Article  PubMed  CAS  Google Scholar 

  46. Fernando LP, Kandel PK, Yu J et al (2010) Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules 11:2675–2682

    Article  PubMed  CAS  Google Scholar 

  47. Karlmark KR, Weiskirchen R, Zimmermann HW et al (2009) Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50:261–274

    Article  PubMed  CAS  Google Scholar 

  48. Tajima T, Murata T, Aritake K et al (2008) Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). J Pharmacol Exp Ther 326:493–501

    Article  PubMed  CAS  Google Scholar 

  49. Herre J, Marshall AS, Caron E et al (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045

    Article  PubMed  CAS  Google Scholar 

  50. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E (2007) Effects of β-glucans on the immune system. Medicina (Kaunas) 43:597–606

    Google Scholar 

  51. Nestle FO, Banchereau J, Hart D (2001) Dendritic cells: on the move from bench to bedside. Nat Med 7:761–765

    Article  PubMed  CAS  Google Scholar 

  52. Morel PA, Feili-Hariri M, Coates PT, Thomson AW (2003) Dendritic cells, T cell tolerance and therapy of adverse immune reactions. Clin Exp Immunol 133:1–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Regione Piemonte (PIIMDMT and nano-IGT projects), Foundation for Science and Technology of Portugal (project PTDC/QUI/70063/2006, contract REDE/1517/RMN/2005, and grant No. SFRH/BD/33187/2007 to SF) and FEDER, for their support. This work was carried out in the framework of the EU COST D38 and TD1004 Actions and EU-FP7 projects ENCITE (grant No. 201842) and INMiND (grant No. 278850).

Conflict of Interest

Dr. Terreno and Dr. Aime are consultants for Bracco Imaging S.p.A. The other authors have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Terreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 13844 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo, S., Cutrin, J.C., Rizzitelli, S. et al. MRI Tracking of Macrophages Labeled with Glucan Particles Entrapping a Water Insoluble Paramagnetic Gd-Based Agent. Mol Imaging Biol 15, 307–315 (2013). https://doi.org/10.1007/s11307-012-0603-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0603-x

Key words

Navigation