Skip to main content

Advertisement

Log in

Mouse Atlas Registration with Non-tomographic Imaging Modalities—a Pilot Study Based on Simulation

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study investigates methodologies for the estimation of small animal anatomy from non-tomographic modalities, such as planar X-ray projections, optical cameras, and surface scanners. The key goal is to register a digital mouse atlas to a combination of non-tomographic modalities, in order to provide organ-level anatomical references of small animals in 3D.

Procedures

A 2D/3D registration method was developed to register the 3D atlas to the combination of non-tomographic imaging modalities. Eleven combinations of three non-tomographic imaging modalities were simulated, and the registration accuracy of each combination was evaluated.

Results

Comparing the 11 combinations, the top-view X-ray projection combined with the side-view optical camera yielded the best overall registration accuracy of all organs. The use of a surface scanner improved the registration accuracy of skin, spleen, and kidneys.

Conclusions

The methodologies and evaluation presented in this study should provide helpful information for designing preclinical atlas-based anatomical data acquisition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baiker M, Vastenhouw B, Branderhorst W et al (2009) Atlas-driven scan planning for high-resolution micro-SPECT data acquisition based on multi-view photographs: a pilot study. Proc SPIE medical imaging 2009: visualization, image-guided procedures, and modeling (Lake Buena Vista, FL, USA) 7261, pp 72611L-72618

  2. Schulz RB, Ale A, Sarantopoulos A et al (2010) Hybrid system for simultaneous fluorescence and X-ray computed tomography. IEEE Trans Med Imag 29:465–473

    Article  Google Scholar 

  3. Hyde D, Miller EL, Brooks DH, Ntziachristos V (2010) Data specific spatially varying regularization for multimodal fluorescence molecular tomography. IEEE Trans Med Imag 29:365–374

    Article  Google Scholar 

  4. Gulsen G, Birgul O, Unlu MB, Shafiiha R, Nalcioglu O (2006) Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals. Technol Cancer Res Treat 5:351–363

    PubMed  Google Scholar 

  5. Song X, Wang D, Chen N, Bai J, Wang H (2007) Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. Opt Express 15:18300–18317

    Article  PubMed  Google Scholar 

  6. Chow PL, Rannou FR, Chatziioannou AF (2005) Attenuation correction for small animal PET tomographs. Phys Med Biol 50:1837–1850

    Article  PubMed  Google Scholar 

  7. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  8. Matsui E (2005) Micro CT. Lung Cancer 49:S137

    Article  Google Scholar 

  9. Driehuys B, Nouls J, Badea A et al (2008) Small animal imaging with magnetic resonance microscopy. ILAR J 49:35–53

    PubMed  CAS  Google Scholar 

  10. Unlu MB, Lin Y, Birgul O, Nalcioglu O, Gulsen G (2008) Simultaneous in vivo dynamic magnetic resonance–diffuse optical tomography for small animal imaging. J Biomed Opt 13:060501

    Article  PubMed  Google Scholar 

  11. Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  PubMed  CAS  Google Scholar 

  12. Xia Z, Huang XS, Zhou XB et al (2008) Registration of 3-D CT and 2-D flat images of mouse via affine transformation. IEEE Trans Inf Technol Biomed 12:569–578

    Article  PubMed  Google Scholar 

  13. Wildeman MH, Baiker M, Reiber JHC et al (2009) 2D/3D registration of micro-CT data to multi-view photographs based on a 3D distance map. In: 6th IEEE int. symp. biomed. imag.: from nano to macro. Boston, MA, USA, pp 987–990

  14. Kok P, Dijkstra J, Botha CP et al (2007) Integrated visualization of multi-angle bioluminescence imaging and micro CT. Proc SPIE medical imaging 2007: visualization and image-guided procedures (San Diego, CA, USA) 6509, pp 65091U–65010

  15. Zhang H, Bao Q, Vu NT et al (2011) Performance evaluation of PETbox: a low cost bench top preclinical PET scanner. Mol Imag Biol 13:949–961

    Google Scholar 

  16. Khmelinskii A, Baiker M, Kaijzel EL et al (2011) Articulated whole-body atlases for small animal image analysis: construction and applications. Mol Imag Biol 13:898–910

    Google Scholar 

  17. Lasser T, Soubret A, Ripoll J, Ntziachristos V (2008) Surface reconstruction for free-space 360 degrees fluorescence molecular tomography and the effects of animal motion. IEEE Trans Med Imag 27:188–194

    Article  Google Scholar 

  18. Douglas L, Gabriel T (2009) Build your own 3D scanner: 3D photography for beginners. In: ACM SIGGRAPH 2009 courses. ACM, New Orleans, Louisiana

  19. Li C, Mitchell GS, Dutta J et al (2009) A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design. Optic Express 17:7571–7585

    Article  CAS  Google Scholar 

  20. Rice BW, Xu H, Kuo C (2009) Surface construction using combined photographic and structured light information. Xenogen Corporation, Alameda

    Google Scholar 

  21. Leblond F, Davis SC, Valdes PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B 98:77–94

    Article  PubMed  CAS  Google Scholar 

  22. McLaughlin W, Vizard D (2006) Kodak in vivo imaging system: precise coregistration of molecular imaging with anatomical X-ray imaging in animals. Nature Methods Application Notes, pp 26–28

  23. Caliper LifeSciences IVIS® lumina XR system. http://www.caliperls.com/products/preclinical-imaging/ivis-lumina-xr.htm

  24. Li X, Yankeelov TE, Peterson TE, Gore JC, Dawant BM (2008) Automatic nonrigid registration of whole body CT mice images. Med Phys 35:1507–1520

    Article  PubMed  Google Scholar 

  25. Fei B, Wang H, Muzic RF Jr et al (2006) Deformable and rigid registration of MRI and microPET images for photodynamic therapy of cancer in mice. Med Phys 33:753–760

    Article  PubMed  Google Scholar 

  26. Chow PL, Stout DB, Komisopoulou E, Chatziioannou AF (2006) A method of image registration for small animal, multi-modality imaging. Phys Med Biol 51:379–390

    Article  PubMed  Google Scholar 

  27. Lebenberg J, Herard AS, Dubois A et al (2010) Validation of MRI-based 3D digital atlas registration with histological and autoradiographic volumes: an anatomofunctional transgenic mouse brain imaging study. Neuroimage 51:1037–1046

    Article  PubMed  CAS  Google Scholar 

  28. Zhang X, Badea CT, Johnson GA (2009) Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy. J Biomed Opt 14:064010

    Article  PubMed  Google Scholar 

  29. Joshi AA, Chaudhari AJ, Li C et al (2010) DigiWarp: a method for deformable mouse atlas warping to surface topographic data. Phys Med Biol 55:6197–6214

    Article  PubMed  Google Scholar 

  30. Chaudhari AJ, Joshi AA, Darvas F, Leahy RM (2007) A method for atlas-based volumetric registration with surface constraints for Optical Bioluminescence Tomography in small animal imaging. Proc SPIE medical imaging 2007: physics of medical imaging 6510, pp 651024–651010

  31. Dworzak J, Lamecker H, von Berg J et al (2010) 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model. Int J Comput Assist Radiol Surg 5:111–124

    Article  PubMed  Google Scholar 

  32. Groher M, Zikic D, Navab N (2009) Deformable 2D–3D registration of vascular structures in a one view scenario. IEEE Trans Med Imag 28:847–860

    Article  Google Scholar 

  33. Benameur S, Mignotte M, Parent S et al (2003) 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph 27:321–337

    Article  PubMed  Google Scholar 

  34. Fu DS, Kuduvalli G (2008) A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery. Med Phys 35:2180–2194

    Article  PubMed  Google Scholar 

  35. van der Bom MJ, Pluim JP, Gounis MJ et al (2011) Registration of 2D X-ray images to 3D MRI by generating pseudo-CT data. Phys Med Biol 56:1031–1043

    Article  PubMed  Google Scholar 

  36. Chen X, Gilkeson RC, Fei B (2007) Automatic 3D-to-2D registration for CT and dual-energy digital radiography for calcification detection. Med Phys 34:4934–4943

    Article  PubMed  Google Scholar 

  37. Kim Y, Kim K-I, Choi Jh, Lee K (2010) Novel methods for 3D postoperative analysis of total knee arthroplasty using 2D–3D image registration. Clin Biomech 26:384–391

    Article  CAS  Google Scholar 

  38. van der Bom MJ, Bartels LW, Gounis MJ et al (2010) Robust initialization of 2D–3D image registration using the projection-slice theorem and phase correlation. Med Phys 37:1884–1892

    Article  PubMed  Google Scholar 

  39. Zheng G (2010) Effective incorporating spatial information in a mutual information based 3D–2D registration of a CT volume to X-ray images. Comput Med Imaging Graph 34:553–562

    Article  PubMed  Google Scholar 

  40. Stout D, Chatziioannou A, Lawson T et al (2005) Small animal imaging center design: the facility at the UCLA Crump Institute for Molecular Imaging. Mol Imag Biol 7:393–402

    Article  Google Scholar 

  41. Delingette H (1999) General object reconstruction based on simplex meshes. Int J Comput Vis 32:111–146

    Article  Google Scholar 

  42. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26:1124–1137

    Article  PubMed  Google Scholar 

  43. Kohli P, Torr PHS (2005) Efficiently solving dynamic Markov random fields using graph cuts. Proc IEEE international conference on computer vision (ICCV 05) (Beijing, China) 2, pp 922–929

  44. Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol 52:577–587

    Article  PubMed  Google Scholar 

  45. Segars WP, Tsui BMW, Frey EC, Johnson GA, Berr SS (2004) Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imag Biol 6:149–159

    Article  Google Scholar 

  46. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    Google Scholar 

  47. National Institute of Standards and Technology (NIST). http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html

  48. Thevenaz P, Unser M (2000) Optimization of mutual information for multiresolution image registration. IEEE Trans Image Process 9:2083–2099

    Article  PubMed  CAS  Google Scholar 

  49. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imag 29:196–205

    Article  Google Scholar 

  50. Stefan K, Josien PP, Marius S, Max AV (2009) Adaptive stochastic gradient descent optimisation for image registration. Int J Comput Vis 81:227–239

    Article  Google Scholar 

  51. Staring M, Klein S, Pluim JP (2007) A rigidity penalty term for nonrigid registration. Med Phys 34:4098–4108

    Article  PubMed  Google Scholar 

  52. Baiker M, Milles J, Dijkstra J et al (2010) Atlas-based whole-body segmentation of mice from low-contrast micro-CT data. Med Image Anal 14:723–737

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Stefan Klein and Dr. Marius Staring for providing the elastix registration toolbox and giving advises for using it and Dr. Yuri Boykov for offering publicly available codes of the graph cuts method which was used for mouse atlas and subject phantom construction. We also acknowledge Dr. Ritva Lofstedt for comments on this paper and Richard Taschereau, Waldemar Ladno, Nam Vu, David Prout, Zheng Gu Alex Dooraghi, and Brittany Berry Puzey for helpful discussions on this project. This work was supported in part by SAIRP NIH-NCI 2U24 CA092865 and in part by a UCLA Chancellor’s Bioscience Core grant.

Conflict of Interest Statement

A provisional patent application describing this work has been filed (UCLA Case No. 2011–395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Stout, D.B. & Chatziioannou, A.F. Mouse Atlas Registration with Non-tomographic Imaging Modalities—a Pilot Study Based on Simulation. Mol Imaging Biol 14, 408–419 (2012). https://doi.org/10.1007/s11307-011-0519-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0519-x

Key words

Navigation