Skip to main content
Log in

LC–HRMS fingerprinting as an efficient approach to highlight fine differences in cheese metabolome during ripening

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

New approaches, mainly based on mass spectrometry techniques, are being developed and appear as a must in the modern food science and microbiology research to investigate food quality and safety. To date, the investigation of cheese ripening mechanisms has mostly used targeted approaches. The aims of the present project were to assess the use of untargeted metabolomics as an approach to investigate the influence of altering one ripening parameter to generate fine differences in the microbial metabolism within cheese. Two cheeses were made which varied with respect to the spatial distribution of bacterial colonies, leading to cheeses with only big or only small colonies. Liquid chromatography high resolution mass spectrometry metabolic fingerprints were acquired on cheese extracts collected after 2, 13 and 27 days of ripening using two different extraction methods (water or acetonitrile) and analyzed using two different simultaneous ionization modes (positive and negative electrospray). Data processing involving XCMS and multivariate statistical analysis highlighted significant discriminant profiles of the cheese metabolomes according to the two different spatial distributions compared. The different fractions investigated (water and acetonitrile extractions in two ionization modes) were complementary and resulted in a view as global as possible of the cheese metabolome which had been modulated by the spatial distribution of bacterial colonies. Some of the metabolites were then identified using an in-house database. These results show the relevance of cheese LC–HRMS fingerprinting to understand the influence of a ripening parameter generating fine differences on microbial metabolism within cheese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aly, S., Floury, J., Famelart, M. H., Madec, M. N., Dupont, D., Le Gouar, Y., et al. (2011). Nisin quantification by ELISA qllows the modeling of its apparent diffusion coefficient in model cheeses. Journal of Agricultural and Food Chemistry, 59(17), 9484–9490.

    Article  CAS  PubMed  Google Scholar 

  • Antignac, J., Courant, F., Pinel, G., Bichon, E., Monteau, F., Elliott, C., et al. (2011). Mass spectrometry-based metabolomics applied to the chemical safety of food. Trends in Analytical Chemistry, 30(2), 292–301.

    Article  CAS  Google Scholar 

  • Buscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81(6), 2135–2143.

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D., & Rodrick, G. E. (2009). Metabolomic analysis in food science: A review. Trends in Food Science & Technology, 20(11-12), 557–566.

    Article  CAS  Google Scholar 

  • Cifuentes, A. (2009). Food analysis and foodomics foreword. Journal of Chromatography A, 1216(43), 7109.

    Article  CAS  PubMed  Google Scholar 

  • Consonni, R., & Cagliani, L. (2008). Ripening and geographical characterization of Parmigiano Reggiano cheese by (1)H NMR spectroscopy. Talanta, 76(1), 200–205.

    Article  CAS  PubMed  Google Scholar 

  • Courant, F., Royer, A. L., Chéreau, S., Morvan, M., Monteau, F., Antignac, J. P., et al. (2012). Implementation of a semi-automated strategy for the annotation of metabolomic fingerprints generated by liquid chromatography-high resolution mass spectrometry from biological samples. Analyst, 137(21), 4958–4967.

    Article  CAS  PubMed  Google Scholar 

  • Cretenet, M., Laroute, V., Ulve, V., Jeanson, S., Nouaille, S., Even, S., et al. (2011). Dynamic analysis of the Lactococcus lactis transcriptome in cheeses made from milk concentrated by ultrafiltration reveals multiple strategies of adaptation to stresses. Applied and Environmental Microbiology, 77(1), 247–257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trac-Trends in Analytical Chemistry, 24(4), 285–294.

    Article  CAS  Google Scholar 

  • Duportet, X., Aggio, R. B. M., Carneiro, S., & Villas-Boas, S. G. (2012). The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics, 8(3), 410–421.

    Article  CAS  Google Scholar 

  • Garcia-Canas, V., Simo, C., Herrero, M., Ibanez, E., & Cifuentes, A. (2012). Present and future challenges in food analysis: Foodomics. Analytical Chemistry, 84(23), 10150–10159.

    Article  CAS  PubMed  Google Scholar 

  • Gianferri, R., Maioli, M., Delfini, M., & Brosio, E. (2007). A low-resolution and high-resolution nuclear magnetic resonance integrated approach to investigate the physical structure and metabolic profile of Mozzarella di Bufala Campana cheese. International Dairy Journal, 17(2), 167–176.

    Article  CAS  Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22(5), 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Hannon, J. A., Lopez, C., Madec, M. N., & Lortal, S. (2006). Altering renneting pH changes microstructure, cell distribution, and lysis of Lactococcus lactis AM2 in cheese made from ultrafiltered milk. Journal of Dairy Science, 89(3), 812–823.

    Article  CAS  PubMed  Google Scholar 

  • Hendriks, M. M. W. B., van Eeuwijk, F. A., Jellema, R. H., Westerhuis, J. A., Reijmers, T. H., Hoefsloot, H. C. J., et al. (2011). Data-processing strategies for metabolomics studies. Trac-Trends in Analytical Chemistry, 30(10), 1685–1698.

    Article  CAS  Google Scholar 

  • Herrero, M., Simo, C., Garcia-Canas, V., Ibanez, E., & Cifuentes, A. (2012). Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrometry Reviews, 31(1), 49–69.

    Article  CAS  PubMed  Google Scholar 

  • Hession, A. O., Esrey, E. G., Croes, R. A., & Maxwell, C. A. (2008). N-acetylglutamate and N-acetylaspartate in soybeans (Glycine max L.), maize (Zea maize L.), and other foodstuffs. Journal of Agricultural and Food Chemistry, 56(19), 9121–9126.

    Article  CAS  PubMed  Google Scholar 

  • Isolini, D., Grand, M., & Glattli, H. (1990). Selective media for the detection of obligate and facultative heterofermentative lactobacilli. Schweizerische Milchwirtschaftliche Forschung, 19(3), 57–59.

  • Jeanson, S., Chadoeuf, J., Madec, M., Aly, S., Floury, J., Brocklehurst, T., et al. (2011). Spatial distribution of bacterial colonies in a model cheese. Applied and Environmental Microbiology, 77(4), 1493–1500.

  • Juillard, V., Lebars, D., Kunji, E. R. S., Konings, W. N., Gripon, J. C., & Richard, J. (1995). Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Applied and Environmental Microbiology, 61(8), 3024–3030.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kell, D. B., & Oliver, S. G. (2004). Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays, 26(1), 99–105.

    Article  PubMed  Google Scholar 

  • Kessner, D., Chambers, M., Burke, R., Agusand, D., & Mallick, P. (2008). ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics, 24(21), 2534–2536.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kilstrup, M., Hammer, K., Jensen, P. R., & Martinussen, J. (2005). Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiology Reviews, 29(3), 555–590.

    Article  CAS  PubMed  Google Scholar 

  • Le Boucher, C., Courant, F., Jeanson, S., Chereau, S., Maillard, M. B., Royer, A. L., et al. (2013). First mass spectrometry metabolic fingerprinting of bacterial metabolism in a model cheese. Food Chemistry, 141(2), 1032–1040.

    Article  PubMed  Google Scholar 

  • McSweeney, P. L. H. (2004). Biochemistry of cheese ripening. International Journal of Dairy Technology, 57(2-3), 127–144.

    Article  CAS  Google Scholar 

  • Meldrum, R. J., Brocklehurst, T. F., Wilson, D. R., & Wilson, P. D. G. (2003). The effects of cell immobilization, pH and sucrose on the growth of Listeria monocytogenes Scott A at 10 degrees C. Food Microbiology, 20(1), 97–103.

    Article  CAS  Google Scholar 

  • Mucchetti, G., Locci, F., Gatti, M., Neviani, E., Addeo, F., Dossena, A., et al. (2000). Pyroglutamic acid in cheese: Presence, origin, and correlation with ripening time of Grana Padano cheese. Journal of Dairy Science, 83(4), 659–665.

    Article  CAS  PubMed  Google Scholar 

  • Neumann, S., & Bocker, S. (2010). Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Analytical and Bioanalytical Chemistry, 398(7-8), 2779–2788.

    Article  CAS  PubMed  Google Scholar 

  • Niven, G. W., Knight, D. J., & Mulholland, F. (1998). Changes in the concentrations of free amino acids in milk during growth of Lactococcus lactis indicate biphasic nitrogen metabolism. Journal of Dairy Research, 65(1), 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Preininger, M., Warmke, R., & Grosch, W. (1996). Identification of the character impact flavour compounds of Swiss cheese by sensory studies of models. Zeitschrift fur Lebensmittel-Untersuchung Und-Forschung, 202(1), 30–34.

    Article  CAS  Google Scholar 

  • Putri, S. P., Nakayama, Y., Matsuda, F., Uchikata, T., Kobayashi, S., Matsubara, A., et al. (2013). Current metabolomics: Practical applications. Journal of Bioscience and Bioengineering, 115(6), 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, D., & Robards, K. (2006). Metabolomics: The greatest omics of them all? Analytical Chemistry, 78(23), 7954–7958.

    Article  CAS  PubMed  Google Scholar 

  • Shintu, L., & Caldarelli, S. (2006). Toward the determination of the geographical origin of emmental(er) cheese via high resolution MAS NMR: A preliminary investigation. Journal of Agricultural and Food Chemistry, 54(12), 4148–4154.

    Article  CAS  PubMed  Google Scholar 

  • Skandamis, P., Tsigarida, E., & Nychas, G. J. E. (2000). Ecophysiological attributes of Salmonella typhimurium in liquid culture and within a gelatin gel with or without the addition of oregano essential oil. World Journal of Microbiology & Biotechnology, 16(1), 31–35.

    Article  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Song, A. A. L., Abdullah, J. O., Abdullah, M. P., Shafee, N., Othman, R., Tan, E. F., et al. (2012). Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. Plos One, 7(12), e52444.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tautenhahn, R., Patti, G. J., Kalisiak, E., Miyamoto, T., Schmidt, M., Lo, F. Y., et al. (2011). metaXCMS: Second-order analysis of untargeted metabolomics data. Analytical Chemistry, 83(3), 696–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Theodoridis, G., Gika, H. G., & Wilson, I. D. (2011). Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrometry Reviews, 30(5), 884–906.

    CAS  PubMed  Google Scholar 

  • Ulve, V., Monnet, C., Valence, F., Fauquant, J., Falentin, H., & Lortal, S. (2008). RNA extraction from cheese for analysis of in situ gene expression of Lactococcus lactis. Journal of Applied Microbiology, 105(5), 1327–1333.

  • van der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8(11), 5132–5141.

    Article  PubMed  Google Scholar 

  • Villas-Boas, S. G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Global metabolite analysis of yeast: Evaluation of sample preparation methods. Yeast, 22(14), 1155–1169.

    Article  CAS  PubMed  Google Scholar 

  • Walker, S. L., Brocklehurst, T. F., & Wimpenny, J. W. T. (1997). The effects of growth dynamics upon pH gradient formation within and around subsurface colonies of Salmonella typhimurium. Journal of Applied Microbiology, 82(5), 610–614.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, P. D. G., Brocklehurst, T. F., Arino, S., Thuault, D., Jakobsen, M., Lange, M., et al. (2002). Modelling microbial growth in structured foods: Towards a unified approach. International Journal of Food Microbiology, 73(2-3), 275–289.

    Article  CAS  PubMed  Google Scholar 

  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., et al. (2008). Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites. Analytical Chemistry, 80(8), 2939–2948.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S. (2008). Metabolomics: Applications to food science and nutrition research. Trends in Food Science & Technology, 19(9), 482–493.

    Article  CAS  Google Scholar 

  • Yanes, O., Tautenhahn, R., Patti, G. J., & Siuzdak, G. (2011). Expanding coverage of the metabolome for global metabolite profiling. Analytical Chemistry, 83(6), 2152–2161.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yvon, M., & Rijnen, L. (2001). Cheese flavour formation by amino acid catabolism. International Dairy Journal, 11(4-7), 185–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the framework of the CheeseOmic Project co-funded by the Brittany and Pays-de-la-Loire Regional Councils (France) and supported by Bretagne Biotechnologie Alimentaire (Bba) association. Clémentine Le Boucher is recipient of a PhD Grant from the French Ministry of Research. Authors are grateful to Marie-Bernadette Maillard for her support concerning microbial analysis and to Hector Gallart-Ayala for his support concerning the data analysis.

Conflict of interest

The authors declare no conflict of interests.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaud Dervilly-Pinel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Boucher, C., Courant, F., Royer, AL. et al. LC–HRMS fingerprinting as an efficient approach to highlight fine differences in cheese metabolome during ripening. Metabolomics 11, 1117–1130 (2015). https://doi.org/10.1007/s11306-014-0769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0769-0

Keywords

Navigation