Skip to main content

Advertisement

Log in

Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Methamphetamine (MA) is an illegal stimulant drug of abuse with serious negative health consequences. The neurochemical effects of MA have been partially characterized, with a traditional focus on classical neurotransmitter systems. However, these directions have not yet led to novel drug treatments for MA abuse or toxicity. As an alternative approach, we describe here the first application of metabolomics to investigate the neurochemical consequences of MA exposure in the rodent brain. We examined single exposures at 3 mg/kg and repeated exposures at 3 mg/kg over 5 days in eight common inbred mouse strains. Brain tissue samples were assayed using high-throughput gas and liquid chromatography mass spectrometry, yielding quantitative data on >300 unique metabolites. Association testing and false discovery rate control yielded several metabolome-wide significant associations with acute MA exposure, including compounds such as lactate (p = 4.4 × 10−5, q = 0.013), tryptophan (p = 7.0 × 10−4, q = 0.035) and 2-hydroxyglutarate (p = 1.1 × 10−4, q = 0.022). Secondary analyses of MA-induced increase in locomotor activity showed associations with energy metabolites such as succinate (p = 3.8 × 10−7). Associations specific to repeated (5 day) MA exposure included phosphocholine (p = 4.0 × 10−4, q = 0.087) and ergothioneine (p = 3.0 × 10−4, q = 0.087). Our data appear to confirm and extend existing models of MA action in the brain, whereby an initial increase in energy metabolism, coupled with an increase in behavioral locomotion, gives way to disruption of mitochondria and phospholipid pathways and increased endogenous antioxidant response. Our study demonstrates the power of comprehensive MS-based metabolomics to identify drug-induced changes to brain metabolism and to develop neurochemical models of drug effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akanmu, D., Cecchini, R., Aruoma, O. I., & Halliwell, B. (1991). The antioxidant action of ergothioneine. Archives of Biochemistry and Biophysics, 288, 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Ariyannur, P. S., Moffett, J. R., Manickam, P., et al. (2010). Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: Implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Research, 1335, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57, 289–300.

    Google Scholar 

  • Bukszar, J., McClay, J. L., & van den Oord, E. J. (2009). Estimating the posterior probability that genome-wide association findings are true or false. Bioinformatics, 25, 1807–1813.

    Article  PubMed  CAS  Google Scholar 

  • Caligiuri, M. P., & Buitenhuys, C. (2005). Do preclinical findings of methamphetamine-induced motor abnormalities translate to an observable clinical phenotype? Neuropsychopharmacology, 30, 2125–2134.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, M., Carmo, H., Costa, V. M., et al. (2012). Toxicity of amphetamines: An update. Archives of Toxicology, 86(8), 1167–1231.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L., Ernst, T., Speck, O., & Grob, C. S. (2005). Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. American Journal of Psychiatry, 162, 361–369.

    Article  PubMed  Google Scholar 

  • Clayton, T. A., Lindon, J. C., Cloarec, O., et al. (2006). Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature, 440, 1073–1077.

    Article  PubMed  CAS  Google Scholar 

  • Constantinou, C., Chrysanthopoulos, P. K., Margarity, M., & Klapa, M. I. (2011). GC-MS metabolomic analysis reveals significant alterations in cerebellar metabolic physiology in a mouse model of adult onset hypothyroidism. Journal of Proteome Research, 10, 869–879.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, E. K. (2006). Meth mouth: a review of methamphetamine abuse and its oral manifestations. General Dentistry, 54, 125–129. quiz 130.

    PubMed  Google Scholar 

  • de Graaf, R. A., Chowdhury, G. M., Brown, P. B., Rothman, D. L., & Behar, K. L. (2009). In situ 3D magnetic resonance metabolic imaging of microwave-irradiated rodent brain: A new tool for metabolomics research. Journal of Neurochemistry, 109, 494–501.

    Article  PubMed  Google Scholar 

  • Dehaven, C. D., Evans, A. M., Dai, H., & Lawton, K. A. (2010). Organization of GC/MS and LC/MS metabolomics data into chemical libraries. Journal of Cheminformatics, 2, 9.

    Article  PubMed  Google Scholar 

  • Ernst, T., Chang, L., Leonido-Yee, M., & Speck, O. (2000). Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study. Neurology, 54, 1344–1349.

    Article  PubMed  CAS  Google Scholar 

  • Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M., & Milgram, E. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry, 81, 6656–6667.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales, R., Mooney, L., & Rawson, R. A. (2010). The methamphetamine problem in the United States. Annual Review of Public Health, 31, 385–398.

    Article  PubMed  Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22, 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Grundemann, D., Harlfinger, S., Golz, S., et al. (2005). Discovery of the ergothioneine transporter. Proceedings of National Academy of Sciences of the United States of America, 102, 5256–5261.

    Article  Google Scholar 

  • Hendrickson, R. G., Cloutier, R., & McConnell, K. J. (2008). Methamphetamine-related emergency department utilization and cost. Academic Emergency Medicine, 15, 23–31.

    Article  PubMed  Google Scholar 

  • Ikarashi, Y., Sasahara, T., & Maruyama, Y. (1985). Postmortem changes in catecholamines, indoleamines, and their metabolites in rat brain regions: Prevention with 10-kW microwave irradiation. Journal of Neurochemistry, 45, 935–939.

    Article  PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk, R., & Krishnan, K. R. (2009). Metabolomics: A global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology, 34, 173–186.

    Article  PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology, 48, 653–683.

    Article  PubMed  CAS  Google Scholar 

  • Karila, L., Weinstein, A., Aubin, H. J., Benyamina, A., Reynaud, M., & Batki, S. L. (2010). Pharmacological approaches to methamphetamine dependence: A focused review. British Journal of Clinical Pharmacology, 69, 578–592.

    Article  PubMed  CAS  Google Scholar 

  • Kasischke, K. A., Vishwasrao, H. D., Fisher, P. J., Zipfel, W. R., & Webb, W. W. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science, 305, 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Kaye, S., McKetin, R., Duflou, J., & Darke, S. (2007). Methamphetamine and cardiovascular pathology: A review of the evidence. Addiction, 102, 1204–1211.

    Article  PubMed  Google Scholar 

  • Kita, T., Miyazaki, I., Asanuma, M., Takeshima, M., & Wagner, G. C. (2009). Dopamine-induced behavioral changes and oxidative stress in methamphetamine-induced neurotoxicity. International Review of Neurobiology, 88, 43–64.

    Article  PubMed  CAS  Google Scholar 

  • Kopp, F., Komatsu, T., Nomura, D. K., et al. (2010). The glycerophospho metabolome and its influence on amino acid homeostasis revealed by brain metabolomics of GDE1(-/-) mice. Chemistry and Biology, 17, 831–840.

    Article  PubMed  CAS  Google Scholar 

  • Krasnova, I. N., & Cadet, J. L. (2009). Methamphetamine toxicity and messengers of death. Brain Research Reviews, 60, 379–407.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. W., Kim, S. Y., Lee, T., et al. (2012). Ex vivo detection for chronic ethanol consumption-induced neurochemical changes in rats. Brain Research, 1429, 134–144.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., & Vance, D. E. (2008). Phosphatidylcholine and choline homeostasis. Journal of Lipid Research, 49, 1187–1194.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2006). Metabonomics techniques and applications to pharmaceutical research and development. Pharmaceutical Research, 23, 1075–1088.

    Article  PubMed  CAS  Google Scholar 

  • Loftus, N., Barnes, A., Ashton, S., et al. (2011). Metabonomic investigation of liver profiles of nonpolar metabolites obtained from alcohol-dosed rats and mice using high mass accuracy MSn analysis. Journal of Proteome Research, 10, 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Login, G. R., & Dvorak, A. M. (1994). Application of microwave fixation techniques in pathology to neuroscience studies: A review. Journal of Neuroscience Methods, 55, 173–182.

    Article  PubMed  CAS  Google Scholar 

  • McLoughlin, G. A., Ma, D., Tsang, T. M., et al. (2009). Analyzing the effects of psychotropic drugs on metabolite profiles in rat brain using 1H NMR spectroscopy. Journal of Proteome Research, 8, 1943–1952.

    Article  PubMed  CAS  Google Scholar 

  • Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N., & Namboodiri, A. M. (2007). N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Progress in Neurobiology, 81, 89–131.

    Article  PubMed  CAS  Google Scholar 

  • Moncaster, J. A., Walsh, D. T., Gentleman, S. M., Jen, L. S., & Aruoma, O. I. (2002). Ergothioneine treatment protects neurons against N-methyl-d-aspartate excitotoxicity in an in vivo rat retinal model. Neuroscience Letters, 328, 55–59.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia, N., Pacula, R. L., Kilmer, B., Lundberg, R., Chiesa, J. (2009). The Economic Cost of Methamphetamine Use in the United States, 2005.

  • Nomura, D. K., Morrison, B. E., Blankman, J. L., et al. (2011). Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science, 334, 809–813.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., Masutomi, N., Tsutsui, N., et al. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37, 521–535.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Z., & Raftery, D. (2007). Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and Bioanalytical Chemistry, 387, 525–527.

    Article  PubMed  CAS  Google Scholar 

  • Parng, C., Ton, C., Lin, Y. X., Roy, N. M., & McGrath, P. (2006). A zebrafish assay for identifying neuroprotectants in vivo. Neurotoxicology and Teratology, 28, 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Patkar, A. A., Rozen, S., Mannelli, P., et al. (2009). Alterations in tryptophan and purine metabolism in cocaine addiction: A metabolomic study. Psychopharmacology (Berl), 206, 479–489.

    Article  CAS  Google Scholar 

  • Peachey, E., Rogers, B., Brien, J. F., Maclean, A., & Rogers, D. (1976). Measurement of acute and chronic behavioural effects of methamphetamine in the mouse. Psychopharmacology (Berl), 48, 271–275.

    Article  CAS  Google Scholar 

  • Perrine, S. A., Michaels, M. S., Ghoddoussi, F., Hyde, E. M., Tancer, M. E., & Galloway, M. P. (2009). Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat. NMR in Biomedicine, 22, 419–425.

    Article  PubMed  CAS  Google Scholar 

  • Petkov, P. M., Ding, Y., Cassell, M. A., et al. (2004). An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Research, 14, 1806–1811.

    Article  PubMed  CAS  Google Scholar 

  • Reglinski, J., Smith, W. E., & Sturrock, R. D. (1988). Spin-echo 1H NMR detected response of ergothioneine to oxidative stress in the intact human erythrocyte. Magnetic Resonance in Medicine, 6, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Ross, B. M., Moszczynska, A., Peretti, F. J., et al. (2002). Decreased activity of brain phospholipid metabolic enzymes in human users of cocaine and methamphetamine. Drug and Alcohol Dependence, 67, 73–79.

    Article  PubMed  CAS  Google Scholar 

  • Salo, R., Buonocore, M. H., Leamon, M., et al. (2011). Extended findings of brain metabolite normalization in MA-dependent subjects across sustained abstinence: A proton MRS study. Drug and Alcohol Dependence, 113, 133–138.

    Article  PubMed  Google Scholar 

  • Salo, R., Nordahl, T. E., Natsuaki, Y., et al. (2007). Attentional control and brain metabolite levels in methamphetamine abusers. Biological Psychiatry, 61, 1272–1280.

    Article  PubMed  CAS  Google Scholar 

  • Searle, S. R. (1971). Linear models. New York: Wiley.

    Google Scholar 

  • Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: Wiley.

    Book  Google Scholar 

  • Shi, X., Yao, D., & Chen, C. (2012). Identification of N-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. Journal of Biological Chemistry, 287, 6336–6349.

    Article  PubMed  CAS  Google Scholar 

  • Shiba, T., Yamato, M., Kudo, W., Watanabe, T., Utsumi, H., & Yamada, K. (2011). In vivo imaging of mitochondrial function in methamphetamine-treated rats. Neuroimage, 57, 866–872.

    Article  PubMed  CAS  Google Scholar 

  • Shima, N., Miyawaki, I., Bando, K., et al. (2011). Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology, 287, 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Storey, J. (2003). The positive false discovery rate: A Bayesian interpretation and the q value. Annals of Statistics, 31, 2013–2035.

    Article  Google Scholar 

  • Substance Abuse and Mental Health Services Administration (2010). Results from the 2009 National Survey on Drug Use and Health: Volume I. Summary of National Findings NSDUH Series H-38A. Rockville, MD: Office of Applied Studies.

  • Sylvia, A. L., LaManna, J. C., Rosenthal, M., & Jobbis, F. F. (1977). Metabolite studies of methamphetamine effects based upon mitochondrial respiratory state in rat brain. Journal of Pharmacology and Experimental Therapeutics, 201, 117–125.

    PubMed  CAS  Google Scholar 

  • van den Oord, E., & Sullivan, P. F. (2003). False discoveries and models for gene discovery. Trends in Genetics, 19, 537–542.

    Article  PubMed  Google Scholar 

  • Van Schaftingen, E., Rzem, R., & Veiga-da-Cunha, M. (2009). L: -2-Hydroxyglutaric aciduria, a disorder of metabolite repair. Journal of Inherited Metabolic Disease, 32, 135–142.

    Article  PubMed  Google Scholar 

  • Volz, T. J., Fleckenstein, A. E., & Hanson, G. R. (2007). Methamphetamine-induced alterations in monoamine transport: implications for neurotoxicity, neuroprotection and treatment. Addiction, 102(Suppl 1), 44–48.

    Article  PubMed  Google Scholar 

  • Wise, R. A., & Bozarth, M. A. (1987). A psychomotor stimulant theory of addiction. Psychological Review, 94, 469–492.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, D. S. (2007). Current progress in computational metabolomics. Brief Bioinformatics, 8, 279–293.

    Article  PubMed  CAS  Google Scholar 

  • Xia, J., & Wishart, D. S. (2010). MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Research, 38, W71–W77.

    Article  PubMed  CAS  Google Scholar 

  • Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6, 743–760.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, B. K., & Bankson, M. G. (2005). Amphetamine neurotoxicity: Cause and consequence of oxidative stress. Critical Reviews in Neurobiology, 17, 87–117.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, B. K., Moszczynska, A., & Gudelsky, G. A. (2010). Amphetamine toxicities: Classical and emerging mechanisms. Annals of the New York Academy of Sciences, 1187, 101–121.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S. J., Lyoo, I. K., Kim, H. J., et al. (2010). Neurochemical alterations in methamphetamine-dependent patients treated with cytidine-5′-diphosphate choline: a longitudinal proton magnetic resonance spectroscopy study. Neuropsychopharmacology, 35, 1165–1173.

    Article  PubMed  CAS  Google Scholar 

  • Zweben, J. E., Cohen, J. B., Christian, D., et al. (2004). Psychiatric symptoms in methamphetamine users. American Journal of Addictions, 13, 181–190.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance of Danny Alexander at Metabolon, Inc, Research Triangle Park, North Carolina. Financial support: This work was supported by grants from the US National Institute on Drug Abuse to E. J. C. G. van den Oord (R21DA021411) and the US National Institute of Mental Health (K01MH093731) to D. E. Adkins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. McClay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClay, J.L., Adkins, D.E., Vunck, S.A. et al. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure. Metabolomics 9, 392–402 (2013). https://doi.org/10.1007/s11306-012-0456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0456-y

Keywords

Navigation