Skip to main content
Log in

The relative importance of sexual and asexual reproduction in the spread of Spartina alterniflora using a spatially explicit individual-based model

  • Original Article
  • Published:
Ecological Research

Abstract

This study investigates a spatially explicit, individual-based model for simulating the spread of invasive smooth cordgrass (Spartina alterniflora) in Yancheng coastal wetlands from 1995 to 2010. The model, which considers the landscape heterogeneity and changes detected by remote sensing, also reveals the relative importance of sexual and asexual reproduction in the spread by global sensitivity analysis. The model was verified as suitable for simulating the range expansion of S. alterniflora. The results show that: (1) although seedling recruitment is low, it significantly contributes to the range expansion of S. alterniflora. Removing sexual propagation greatly reduces the expansion rate. Rapid expansion requires both sexual and asexual reproduction; (2) in the global sensitivity analysis, the most significant affecters of S. alterniflora invasion were seed dispersal distance, adult survival rate and asexual recruitment survival rate. Sexual propagation contributes much more significantly to quick range expansion than asexual reproduction, but asexual reproduction is the main source of recruitment. Invasion control strategies should target a single reproduction mode. Here, limiting the germination and dispersal of seeds is suggested as a realistic strategy for controlling and managing invasion by this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistics (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007) Spartina invasion in China: implications for invasive species management and future research. Weed Res 47:183–191

    Article  Google Scholar 

  • Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13:937–954

    Article  PubMed  Google Scholar 

  • Bradley BA, Mustard JF (2005) Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin. Remote Sens Environ 94:204–213

    Article  Google Scholar 

  • Buhle ER, Feist BE, Hilborn R (2012) Population dynamics and control of invasive Spartina alterniflora: inference and forecasting under uncertainty. Ecol Appl 22:880–893

    Article  PubMed  Google Scholar 

  • Cariboni J, Gatelli D, Liska R, Saltelli A (2007) The role of sensitivity analysis in ecological modelling. Ecol Model 203:167–182

    Article  Google Scholar 

  • Civille JC, Sayce K, Smith SD, Strong DR (2005) Reconstructing a century of Spartina alterniflora invasion with historical records and contemporary remote sensing. Ecoscience 12:330–338

    Article  Google Scholar 

  • Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80:1475–1494

    Article  Google Scholar 

  • Clark-Tapia R, Mandujano MC, Valverde T, Mendoza A, Molina-Freaner F (2005) How important is clonal recruitment for population maintenance in rare plant species?: the case of the narrow endemic cactus, Stenocereus eruca, in Baja California, Mexico. Biol Conserv 124:123–132

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Cohen EB, Pearson SM, Moore FR (2014) Effects of landscape composition and configuration on migrating songbirds: inference from an individual-based model. Ecol App 24:169–180

    Article  Google Scholar 

  • Coutts SR, van Klinken RD, Yokomizo H, Buckley YM (2011) What are the key drivers of spread in invasive plants: dispersal, demography or landscape: and how can we use this knowledge to aid management? Biol Invasions 13:1649–1661

    Article  Google Scholar 

  • Daehler CC (1999) Inbreeding depressing in smooth cord grass (Spartina alterniflora, Poaceae) invading San Francico Bay. Am J Bot 86:131–139

    Article  PubMed  CAS  Google Scholar 

  • Daehler CC, Strong D (1994) Variable reproductive output among clones of Spartina alterniflora (Poaceae) invading San Francisco Bay, California: the influence of herbivory, pollination, and establishment site. Am J Bot 81:307–313

    Article  Google Scholar 

  • Daehler CC, Strong DR (1996) Status, prediction and prevention of introduced cord grass Spartina spp. Invasions in Pacific Estuaries USA. Biol Conserv 78:51–58

    Article  Google Scholar 

  • Davis HG, Taylor CM, Civille JC (2004) An Allee effect at the front of a plant invasion: Spartina in a Pacific Estuary. J Ecol 92:321–327

    Article  Google Scholar 

  • Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238

    Article  Google Scholar 

  • Eriksson O (1992) Evolution of seed dispersal and recruitment in clonal plants. Oikos 63:439–448

    Article  Google Scholar 

  • Eriksson O (1993) Dynamics of genets in clonal plants. Tree 8:313–316

    PubMed  CAS  Google Scholar 

  • Ge Z, Cao H, Zhang L (2013) A process-based grid model for the simulation of range expansion of Spartina alterniflora on the coastal salt marshes in the Yangtze Estuary. Ecol Eng 58:105–112

    Article  Google Scholar 

  • Grevstad FS (2005) Simulating control strategies for a spatially structured weed invasion: Spartina alterniflora (Loisel) in Pacific Coast Estuaries. Biol Invasions 7:665–677

    Article  Google Scholar 

  • Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  PubMed  CAS  Google Scholar 

  • Harper EB, Stella JC, Fremier AK (2011) Global sensitivity analysis for complex ecological models: a case study of riparian cottonwood population dynamics. Ecol Appl 21:1225–1240

    Article  PubMed  Google Scholar 

  • Hirsch BT, Visser MD, Kays R, Jansen PA (2011) Quantifying seed dispersal kernels from truncated seed-tracking data. Method Ecol Evol 3:595–602

    Article  Google Scholar 

  • Holderegger R, Stehlik I, Scheller JJ (1998) Estimation of the relative importance of sexual and vegetative reproduction in the clonal woodland herb Anemone nemorosa. Oecologia 117:105–107

    Article  Google Scholar 

  • Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Safe 52:1–17

    Article  Google Scholar 

  • Huang H, Zhang L (2007) A study of the population dynamics of Spartina alterniflora at Jiuduansha shoals, Shanghai, China. Ecol Eng 29:164–172

    Article  Google Scholar 

  • Huang H, Zhang L, Guan Y, Wang D (2008) A cellular automata model for population expansion of Spartina alterniflora at Jiuduansha Shoals, Shanghai, China. Estuar Coast Shelf Sci 77:47–55

    Article  Google Scholar 

  • Hutchings MJ (1988) Differential foraging for resources and structural plasticity in plants. Trends Ecol Evol 3:200–203

    Article  PubMed  CAS  Google Scholar 

  • Jelinski DE, Cheliak WM (1992) Genetic diversity and spatial subdivision of Populus tremuloides (Salicaceae) in a heterogeneous landscape. Am J Bot 79:728–736

    Article  Google Scholar 

  • Joint Research Centre of the European Commission (2011) SimLab: software package for uncertainty and sensitivity analysis. Available at: http://simlab.jrc.ec.europa.eu

  • Jones CC, Acker SA, Halpern CB (2010) Combining local- and large-scale models to predict the distributions of invasive plant species. Ecol Appl 20:311–326

    Article  PubMed  Google Scholar 

  • Lambrecht-McDowell S, Radosevich S (2005) Population demographics and trade-offs to reproduction of an invasive and noninvasive species of Rubus. Biol Invasions 7:281–295

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang X, Tong Y (2009) Relationship between Spartina alterniflora belt on tidal flats and tidal water levels: a case study on Jiangsu Coast and Hangzhou Bay, China. Philipp Agric Sci 92:77–84

    Google Scholar 

  • Liu C, Zhang S, Jiang H, Wang H (2006) Spatiotemporal dynamics and landscape pattern of alien species Spartina alterniflora in Yancheng coastal wetlands of Jiangsu Province, China. Chinese J Appl Ecol 20:901–908

    Google Scholar 

  • Lockwood JL, Hoopes M, Marchetti M (2007) Invasion ecology. Blackwell, Oxford

    Google Scholar 

  • López-Alfaro C, Estades CF, Aldridge DK, Gill RMA (2012) Individual-based modeling as a decision tool for the conservation of the endangered huemul deer (Hippocamelus bisulcus) in southern Chile. Ecol Model 244:104–116

    Article  Google Scholar 

  • Mandujano MC, Montan C, Franco M, Golubov J, Flores-Martı´nez A (2001) Integration of demographic annual variability in a clonal desert cactus. Ecology 82:344–359

    Article  Google Scholar 

  • Mandujano MC, Golubov J, Huenneke LF (2007) Effect of reproductive modes and environmental heterogeneity in the population dynamics of a geographically widespread clonal desert cactus. Popul Ecol 49:141–153

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    Article  PubMed  PubMed Central  Google Scholar 

  • McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823

    Article  Google Scholar 

  • Mitsch WJ, Lefeuvre JC, Bouchard V (2002) Ecological engineering applied to river and wetland restoration. Ecol Eng 18:529–541

    Article  Google Scholar 

  • Morris JA, Shertzer KW, Rice JA (2011) A stage-based matrix population model of invasive lionfish with implications for control. Biol Invasions 13:7–12

    Article  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285

    Article  PubMed  Google Scholar 

  • Ortega-Baes P, Gorostiague P (2013) Extremely reduced sexual reproduction in the clonal cactus Echinopsis thelegona. Plant Syst Evol 299:785–791

    Article  Google Scholar 

  • Parry HR, Evans AJ, Morgan D (2006) Aphid population response to agricultural landscape change: a spatially explicit, individual-based model. Ecol Model 199:451–463

    Article  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Article  Google Scholar 

  • Proffitt CE, Travis SE, Edwards KR (2003) Genotype and elevation influence Sparitina alterniflora colonization and growth in a created salt marsh. Ecol Appl 13:180–192

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Chan KPS (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41:39–56

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice. A guide to assessing scientific models. Wiley, New York

    Google Scholar 

  • Schulze J, Rufener R, Erhardt A, Stoll P (2012) The relative importance of sexual and clonal reproduction for population growth in the perennial herb Fragaria vesca. Popul Ecol 54:369–380

    Article  Google Scholar 

  • Seidl R, Spies TA, Rammer W, Steel EA, Pabst RJ, Olsen K (2012) Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with lidar and an individual-based landscape model. Ecosystems 15:1321–1335

    Article  CAS  Google Scholar 

  • Sobol’ IM (1993) Sensitivity analysis for nonlinear mathematical models. MMTET 1:407–414

    Google Scholar 

  • Taylor CM, Hastings A (2004) Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J Appl Ecol 41:1049–1057

    Article  Google Scholar 

  • Taylor CM, Davis HG, Civille JC, Grevstad FS, Hastings A (2004) Consequences of an Allee effect in the invasion of a pacific Estuary by Spartina alterniflora. Ecology 85:3254–3266

    Article  Google Scholar 

  • Tonini F, Hochmair HH, Scheffrahn RH, Deangelis DL (2013) Simulating the spread of an invasive termite in an urban environment using a stochastic individual-based model. Environ Entomol 42:412–423

    Article  PubMed  Google Scholar 

  • Wallentin G, Tappeiner U, Strobl J, Tasser E (2008) Understanding alpine tree line dynamics: an individual-based model. Ecol Model 218:235–246

    Article  Google Scholar 

  • Wang C, Liu H, Zhang Y, Li Y (2013) Classification of land-cover types in muddy tidal flat wetlands using remote sensing data. J Appl Remote Sens 7:073457

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Weppler T, Stoll P, Stöcklin J (2006) The relative importance of sexual and clonal reproduction for population growth in the long-lived alpine plant Geum reptans. J Ecol 94:869–879

    Article  Google Scholar 

  • Wilfong BN, Gorchov DL, Henry MC (2009) Detecting an invasive shrub in deciduous forest understories using remote sensing. Weed Sci 57:512–520

    Article  CAS  Google Scholar 

  • Wilk JA, Kramer AT, Ashley MV (2009) High variation in clonal vs. sexual reproduction in populations of the wild strawberry, Fragaria virginiana (Rosaceae). Ann Bot 104:1413–1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao DR, Zhang LQ, Zhu ZC (2009) A study on seed characteristics and seed bank of Spartina alterniflora at salt marshes in the Yangtze Estuary, China. Estuar Coastal Shelf Sci 83:105–110

    Article  Google Scholar 

  • Xiao DR, Zhang LQ, Zhu ZC (2010) The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China. Estuar Coastal Shelf Sci 88:99–104

    Article  Google Scholar 

  • Xu W, Wang GX, Liu JE, Chen ZY, Wang G (2011) Seed characteristics and seedling growth of Spartina alterniflora on coastal wetland of North Jiangsu. Acta Ecol Sin 31:4560–4567

    Article  Google Scholar 

  • Yuan Y, Wang K, Li D, Pan Y, Lv Y, Zhao M, Gao J (2013) Interspecific interactions between Phragmites australis and Spartina alterniflora along a tidal gradient in the Dongtan wetland Eastern China. PLoS One 8:e53843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang RS, Shen YM, Lu LY, Yan SG, Wang YH, Li JL, Zhang ZL (2004) Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China. Ecol Eng 23:95–105

    Article  CAS  Google Scholar 

  • Zhang Y, Lu D, Yang B, Sun C, Sun M (2011) Coastal wetland vegetation classification with a Landsat Thematic Mapper image. Int J Remote Sens 32:545–561

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang L, Wang N, Schwarz C, Ysebaert T (2012) Interactions between the range expansion of salt marsh vegetation and hydrodynamic regimes in the Yangtze Estuary, China. Estuar Coastal Shelf Sci 96:273–279

    Article  Google Scholar 

  • Zuo P, Zhao S, Liu C, Wang C, Liang Y (2012) Distribution of Spartina spp. along China’s coast. Ecol Eng 40:160–166

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by China NSF (No. 40901094, 41030751, 40901034, 31370484), Natural Science Foundation of Jiangsu Province (BK20131399) and funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank Prof. Jingle Wu, Prof. Wenxin Ou and the anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenshan Lin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Lin, Z., Qi, X. et al. The relative importance of sexual and asexual reproduction in the spread of Spartina alterniflora using a spatially explicit individual-based model. Ecol Res 29, 905–915 (2014). https://doi.org/10.1007/s11284-014-1181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1181-y

Keywords

Navigation