Skip to main content
Log in

Variation in leaf nitrogen and phosphorus stoichiometry in the nitrogen-fixing Chinese sea-buckthorn (Hippophae rhamnoides L. subsp. sinensis Rousi) across northern China

  • Original Article
  • Published:
Ecological Research

Abstract

Nitrogen (N) and phosphorus (P) concentrations and N:P ratios in terrestrial plants and their patterns of change along environmental gradients are important traits for plant adaptation to changes. We determined the leaf N and P concentrations of Chinese sea-buckthorn (Hippophae rhamnoides L. subsp. sinensis Rousi), a non-legume species with symbiotic N fixation (SNF), at 37 sites across northern China and explored their geographical patterns in relation to climate and soil factors. (1) The mean leaf N, P, and N:P ratio were 36.5, 2.1 mg g−1, and 17.6, respectively, higher than the mean values of most shrub species in the region. (2) Leaf N was correlated with soil mineral N in cool areas (mean annual temperature MAT <3 °C) but with temperature in warm areas (MAT >3 °C). The high leaf N and divergent leaf N–soil N relationship suggested the importance of SNF in plant N uptake; SNF increases with temperature and is probably the major N source in warm areas. (3) Leaf P was positively related to mean annual precipitation. Leaf N:P ratio was primarily driven by changes in leaf P. The high leaf P reflected the greater requirements of the N-fixing species for P. Our results represent a major advance in understanding the elemental stoichiometry of non-legume N-fixing plants, indicating high P and N requirements and a shift in N source from SNF to soil as temperature declines. This knowledge will help in assessing the habitat suitability for the species and predicting the species dynamics under environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Akkermans ADL (1971) Nitrogen fixation and nodulation of Alnus and Hippophae under natural condition. Thesis. Rijks University, Leiden

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag, New York

    Google Scholar 

  • Chen YH, Han WX, Tang LY, Tang ZY, Fan JY (2011) Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 34:1–7

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Danso SKA, Bowen GD, Sanginga N (1992) Biological nitrogen fixation in trees in agro-ecosystems. Plant Soil 141:177–196

    Article  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Esmeijer-Liu AJ, Aerts R, Kürschner WM, Bobbink R, Lotter AF, Verhoeven JTA (2009) Nitrogen enrichment lowers Betula pendula green and yellow leaf stoichiometry irrespective of effects of elevated carbon dioxide. Plant Soil 316:311–322

    Article  CAS  Google Scholar 

  • Fitter AH, Wright WJ, Williamson L, Belshaw M, Fairclough J, Meharg AA (1998) The phosphorus nutrition of wild plants and paradox of arsenate tolerance: does leaf phosphorus concentration control flowering? In: Lynch JP, Deikman J (eds) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society of Plant Biologists, Washington D.C., Rockville, pp 39–51

    Google Scholar 

  • Galloway JN, Schlesinger WH, Levy H II, Michaels A, Schnoor JL (1995) Nitrogen fixation: atmospheric enhancement-environmental response. Global Biogeochem Cycles 9:235–252

    Article  CAS  Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Güsewell S, Koerselman W, Verhoeven JTA (2003) N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384

    Article  Google Scholar 

  • Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788–796

    Article  CAS  PubMed  Google Scholar 

  • He JS, Fang JY, Wang ZH, Guo D, Flynn DFB, Geng Z (2006) Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 149:115–122

    Article  PubMed  Google Scholar 

  • He JS, Wang L, Flynn DFB, Wang X, Ma W, Fang JY (2008) Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–310

    Article  PubMed  Google Scholar 

  • Kang HZ, Zhuang HL, Wu LL, Liu QL, Shen GR, Berg B, Man RZ, Liu CJ (2011) Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe: an analysis based on local observations. For Ecol Manag 261:195–202

    Article  Google Scholar 

  • Khan SA, Mulvaney RL, Hoet RG (2001) A simple soil test for detecting sites that are nonresponsive to nitrogen fertilization. Soil Sci Soc Am J 65:1751–1760

    Article  CAS  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, Berlin

    Book  Google Scholar 

  • Lian YS (2000) Plant biology and chemistry of the genus Hippophae L. Gansu Science and Technology Press, Lanzhou

    Google Scholar 

  • Mcgroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial red field-type ratios. Ecology 85:2390–2401

    Article  Google Scholar 

  • McGuire AD, Mellio JM, Joyce LA (1995) The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon-dioxide. Ann Rev Ecol Syst 26:473–503

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Government Print Office, Washington, DC, pp 1–19

    Google Scholar 

  • Oremus PAI (1979) A quantitative study of nodulation in Hippophae rhamnoides L. in a coastal dune area. Plant Soil 52:59–68

    Article  Google Scholar 

  • Reddell P, Bowen GD, Robson AD (1985) The effects of soil temperature on plant growth, nodulation and nitrogen fixation in Casuarina cunninghamiana Miq. New Phytol 101:441–450

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2011) Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). For Ecol Manage 262:2024–2034

    Article  Google Scholar 

  • Soil map compilation group of Nanjing institute of soil science (1978) Soil map 1:4,000,000 People’s Republic of China. Map Publishing House, Beijing

    Google Scholar 

  • Sprent JI (1979) The biology of nitrogen fixing organisms. McGraw-Hill, London 196 p

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological Stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Stewart WDP, Pearson MC (1967) Nodulation and nitrogen-fixation by Hippophaë rhamnoides L. in the field. Plant Soil 26:348–360

    Article  CAS  Google Scholar 

  • Tian HQ, Wang SQ, Liu JY, Pan SF, Chen H, Zhang C, Shi XZ (2006) Patterns of soil nitrogen storage in China. Global Biogeochem Cycles 20:GB1001. doi:10.1029/2005GB002464

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Toward an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • Wassen MJ, Olde Venterink HGM, de Swart EOAM (1995) Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. J Veg Sci 6:5–16

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

  • Yuan ZY, Chen HYH (2009) Global trends in senescend-leaf nitrogen and phosphorus. Global Ecol Biogeogr 18:532–542

    Article  Google Scholar 

  • Zhang AM, Niu SQ, Sun K, Cao WX, Da WY (2010) Study on the root nodules features of Hippophae and Frankia isolation. Grassland and Turf 30:43–46

    Google Scholar 

  • Zheng SX, Shangguan ZP (2007) Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees 21:357–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dahua Yu, Quan Sun, Yuxiang Zhuo, and Kun Ma for technical assistance in the analysis of plant and soil samples. This work was financially supported by National Natural Science Foundation of China (NSFC, Nos. 31160046 and 31270429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Sun.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, K. & Li, F.Y. Variation in leaf nitrogen and phosphorus stoichiometry in the nitrogen-fixing Chinese sea-buckthorn (Hippophae rhamnoides L. subsp. sinensis Rousi) across northern China. Ecol Res 29, 723–731 (2014). https://doi.org/10.1007/s11284-014-1165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1165-y

Keywords

Navigation