Skip to main content

Advertisement

Log in

Clinical significance of T2 mapping MRI for the evaluation of masseter muscle pain in patients with temporomandibular joint disorders

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

Masticatory muscle pain is one of the typical symptoms of temporomandibular joint disorders (TMD). T2 mapping (distribution of T2 values) is a notable MRI technique for evaluating water contents in tissues. We investigated the clinical significance of T2 mapping for the evaluation of masticator muscle conditions by comparing the difference in the T2 values between the painful and pain-free sides of the masseter muscle in patients with TMD.

Methods

Seventy-three patients clinically diagnosed with TMD were enrolled in this study. We divided the patients into two groups: a unilateral pain group (patients with unilateral masseter muscle pain) and a painless group (patients without muscle pain). There were 29 patients in the unilateral pain group and 44 patients in the painless group. We compared the difference in the mean T2 values between the painful and pain-free sides of the masseter muscle in the unilateral pain group and between the right and left sides in the painless group.

Results

The mean T2 values of the masseter muscle on the painful side were significantly higher than those on the pain-free side in the unilateral muscle pain group (p < 0.01). In the painless group, there was no significant difference in the mean T2 values between the right and left sides.

Conclusions

It is suggested that T2 mapping is a promising method for evaluating masseter muscle pain caused by edematous change related to TMD through monitoring of the T2 values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bakke M, Thomsen CE, Vilmann A, Soneda K, Farella M, Moller E. Ultrasonographic assessment of the swelling of the human masseter muscle after static and dynamic activity. Arch Oral Biol. 1996;41:133–40.

    Article  PubMed  Google Scholar 

  2. Ariji Y, Sakuma S, Kimura Y, Kawamata A, Toyama M, Kurita K, et al. Colour Doppler sonographic analysis of blood-flow velocity in the human facial artery and changes in masseter muscle thickness during low-level static contraction. Arch Oral Biol. 2001;46:1059–64.

    Article  PubMed  Google Scholar 

  3. Ariji Y, Sakuma S, Izumi M, Sasaki J, Kurita K, Ogi N, et al. Ultrasonographic features of the masseter muscle in female patients with temporomandibular disorder associated with myofascial pain. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98:337–41.

    Article  PubMed  Google Scholar 

  4. Lam DK, Sessle BJ, Cairns BE, Hu JW. Neural mechanisms of temporomandibular joint and masticatory muscle pain: a possible role for peripheral glutamate receptor mechanisms. Pain Res Manag. 2005;10:145–52.

    PubMed  Google Scholar 

  5. Ariji Y, Taguchi A, Sakuma S, Miki M, Asawa T, Uchida K, et al. Magnetic resonance T2-weighted IDEAL water imaging for assessing changes in masseter muscles caused by low-level static contraction. Oral Med Oral Pathol Oral Radiol Endod. 2010;109:908–16.

    Article  Google Scholar 

  6. Nagayama K, Suenaga S, Nagata J, Takada H, Majima HJ, Miyawaki S. Clinical significance of magnetization transfer contrast imaging for edematous changes in masticatory muscle. J Comput Assist Tomogr. 2010;34:233–41.

    Article  PubMed  Google Scholar 

  7. Ariji E, Ariji Y, Yoshida K, Kimura S, Horinouchi Y, Kanda S. Ultrasonographic evaluation of inflammatory changes in the masseter muscle. Oral Surg Oral Med Oral Pathol. 1994;78:797–801.

    Article  PubMed  Google Scholar 

  8. Stahl R, Blumenkrantz G, Carballido-Gamio J, Zhao S, Munoz T, Le Graverand-Gastineau MPH, et al. MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up. Osteoarthr Cartil. 2007;15:1225–34.

    Article  PubMed  Google Scholar 

  9. Prior BM, Foley JM, Jayaraman RC, Meyer RA. Pixel T2 distribution in functional magnetic resonance images of muscle. J Appl Physiol. 1999;87:2107–14.

    PubMed  Google Scholar 

  10. Chikui T, Shiraishi T, Tokumori K, Inatomi D, Hatakenaka M, Yuasa K, et al. Assessment of the sequential change of the masseter muscle by clenching: a quantitative analysis of T1, T2, and the signal intensity of the balanced steady-state free precession. Acta Radiol. 2010;6:669–78.

    Article  Google Scholar 

  11. Hazlewood CF, Chang DC, Nichols BL, Woessner DE. Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys J. 1974;14:583–606.

    Article  PubMed  Google Scholar 

  12. Saab G, Thompson RT, Marsh GD. Multicomponent T2 relaxation of in vivo skeletal muscle. Magn Reson Med. 1999;42:150–7.

    Article  PubMed  Google Scholar 

  13. Ababneh Z, Beloeil H, Berde CB, Gambarota G, Maier SE, Mulkern RV. Biexponential parameterization of diffusion and T2 relaxation decay curves in a rat muscle edema model: decay curve components and water compartments. Magn Reson Med. 2005;54:524–31.

    Article  PubMed  Google Scholar 

  14. Saab G, Thompson RT, Marsh GD. Effect of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol. 2000;88:226–33.

    PubMed  Google Scholar 

  15. Ariji Y, Kimura Y, Gotoh Y, Sakuma S, Zhao Y, Ariji E. Blood flow in and around the masseter muscle: normal and pathologic features demonstrated by color Doppler sonography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:472–82.

    Article  PubMed  Google Scholar 

  16. Cairns BE, Gambarota G, Svensson P, Arendt-Nielsen L, Berde CB. Glutamate-induced sensitization of rat masseter muscle fibers. Neuroscience. 2002;109:389–99.

    Article  PubMed  Google Scholar 

  17. Babenko V, Graven-Nielsena T, Svensson P, Drewes AM, Jensen TS, Arendt-Nielsen L. Experimental human muscle pain induced by intramuscular injections of bradykinin, serotonin, and substance P. Eur J Pain. 1999;3:93–102.

    Article  PubMed  Google Scholar 

  18. Torisu T, Wang K, Svensson P, De Laat A, Fujii H, Arendt-Nielsen L. Effects of muscle fatigue induced by low-level clenching on experimental muscle pain and resting jaw muscle activity gender differences. Exp Brain Res. 2006;174:566–74.

    Article  PubMed  Google Scholar 

  19. Svensson P, Burgaard A, Schlosser S. Fatigue and pain in human jaw muscles during a sustained, low-intensity clenching task. Arch Oral Biol. 2001;46:773–7.

    Article  PubMed  Google Scholar 

  20. Svensson P, Wang K, Sessle BJ, Arendt-Nielsen L. Associations between pain and neuromuscular activity in the human jaw and neck muscles. Pain. 2004;109:225–32.

    Article  PubMed  Google Scholar 

  21. Wang K, Sessle BJ, Svensson P, Arendt-Nielsen L. Glutamate evoked neck and jaw muscle pain facilitate the human jaw stretch reflex. Clin Neurophysiol. 2004;115:1288–95.

    Article  PubMed  Google Scholar 

  22. Torisu T, Wang K, Svensson P, De Laat A, Fujii H, Arendt-Nielsen L. Effect of low-level clenching and subsequent muscle pain on exteroceptive suppression and resting muscle activity in human jaw muscles. Clin Neurophysiol. 2007;118:999–1009.

    Article  PubMed  Google Scholar 

  23. Gambarota G, Philippens M, Cairns BE, Dong XD, Renema WKJ, Heerschap A. MRS assessment of glutamate clearance in a novel masticatory muscle pain model. NMR Biomed. 2005;18:345–51.

    Article  PubMed  Google Scholar 

  24. Castrillon EE, Cairns BE, Ernberg M, Wang K, Sessle B, Svensson P, et al. Glutamate-evoked jaw muscle pain as a model of persistent myofascial TMD pain. Arch Oral Biol. 2008;53:666–76.

    Article  PubMed  Google Scholar 

  25. Svensson P, Cairns BE, Wang K, Hu JW, Graven-Nielsen T, Arendt-Nielsen L, et al. Glutamate-evoked pain and mechanical allodynia in the human masseter muscle. Pain. 2003;101:221–7.

    Article  PubMed  Google Scholar 

  26. Cheng HA, Robergs RA, Letellier JP, Caprihan A, Icenogle MV, Haseler LJ. Changes in muscle proton transverse relaxation times and acidosis during exercise and recovery. J Appl Physiol. 1995;79:1370–8.

    PubMed  Google Scholar 

  27. Flechenstein JL, Haller RG, Bertocci LA, Parkey RW, Peshock RM. Glycogenolysis, not perfusion, is the critical mediator of exercise-induced muscle modifications on MR images. Radiology. 1992;183:25–6.

    Google Scholar 

  28. Yanagisawa O, Niitsu M, Takahashi H, Goto K, Itai Y. Evaluation of cooling exercised muscle with MR imaging and 3P MR spectroscopy. Med Sci Sports Exerc. 2003;35:1517–23.

    Article  PubMed  Google Scholar 

  29. Price TB, Gore JC. Effect of muscle glycogen content on exercise-induced changes in muscle T2 times. J Appl Physiol. 1998;84:1178–84.

    PubMed  Google Scholar 

  30. Pan JW, Hamm JR, Hetherington HP, Rothman DL, Shulman RG. Correlation of lactate and pH in human skeletal muscle after exercise by 1H NMR. Magn Reson Med. 1991;20:57–65.

    Article  PubMed  Google Scholar 

  31. Vandenborne K, Walter G, Ploutz-Snyder L, Dudley G, Elliot MA, Meirleir KD. Relationship between muscle T2* relaxation properties and metabolic state: a combined localized 31P-spectroscopy and 1H-imaging study. Eur J Appl Physiol. 2000;82:76–82.

    Article  PubMed  Google Scholar 

  32. Nygren AT, Kaijser L. Water exchange induced by unilateral exercise in active and inactive skeletal muscles. J Appl Physiol. 2002;93:1716–22.

    PubMed  Google Scholar 

  33. Louie EA, Gochberg DF, Does MD, Damon BM. Transverse relaxation and magnetization transfer in skeletal muscle: effect of pH. Magn Reson Med. 2009;61:560–9.

    Article  PubMed  Google Scholar 

  34. Kubota J, Ono T, Araki M, Tawara N, Torii S, Okuwaki T, et al. Relationship between the MRI and EMG measurements. Int J Sports Med. 2009;30:533–7.

    Article  PubMed  Google Scholar 

  35. Schraml C, Schwenzer NF, Martirosian P, Claussen CD, Schick F. Temporal course of perfusion in human masseter muscle during isometric contraction assessed by arterial spin labeling at 3T. MAGMA. 2011;24:201–9.

    Article  PubMed  Google Scholar 

  36. Sakurai Y, Tamura Y, Takeno K, Sato F, Fujitani Y, Hirose T, et al. Association of T2 relaxation time determined by magnetic resonance imaging and intramyocellular lipid content of the soleus muscle in healthy subjects. J Diabetes Invest. 2011;2:356–8.

    Article  Google Scholar 

  37. Schwenzer NF, Martirosian P, Machann J, Schraml C, Steidle G, Claussen CD, et al. Aging effects on human calf muscle properties assessed by MRI at 3 Tesla. J Magn Reson Imaging. 2009;29:1346–54.

    Article  PubMed  Google Scholar 

  38. Polak JF, Jolesz FA, Adams DF. Magnetic resonance imaging of skeletal muscle. Prolongation of T1 and T2 subsequent to denervation. Invest Radiol. 1988;23:365–9.

    Article  PubMed  Google Scholar 

  39. Hayashi Y, Ikata T, Takai H, Takata S, Ishikawa M, Sogabe T, et al. Effect of peripheral nerve injury on nuclear magnetic resonance relaxation times of rat skeletal muscle. Invest Radiol. 1997;32:135–9.

    Article  PubMed  Google Scholar 

  40. Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ. T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology. 2010;255:899–908.

    Article  PubMed  Google Scholar 

  41. Maillard SM, Jones R, Owens C, Pilkington C, Woo P, Wedderburn LR, et al. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology. 2004;43:603–8.

    Article  PubMed  Google Scholar 

  42. Reiter DA, Lin PC, Fishbein KW, Spencer RG. Multicomponent T2 relaxation analysis in cartilage. Magn Reson Med. 2009;61:803–9.

    Article  PubMed  Google Scholar 

  43. Stelzeneder D, Welsch GH, Kovács BK, Goed S, Paternostro-Sluga T, Vlychou M, et al. Quantitative T2 evaluation at 3.0 T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain. Eur J Radiol. 2012;81:324–30.

    Article  PubMed  Google Scholar 

  44. Takashima H, Takebayashi T, Yoshimoto M, Terashima Y, Tsuda H, Ida K, et al. Correlation between T2 relaxation time and intervertebral disk degeneration. Skeletal Radiol. 2012;41:163–7.

    Article  PubMed  Google Scholar 

  45. Meyerspeer M, Mandl T, Reichel M, Mayr W, Hofer C, Kern H, et al. Effects of functional electrical stimulation in denervated thigh muscles of paraplegic patients mapped with T2 imaging. MAGMA. 2008;21:219–26.

    Article  PubMed  Google Scholar 

  46. Mandl T, Meyerspeer M, Reichel M, Kern H, Hofer C, Mayr W, et al. Functional electrical stimulation of long-term denervated, degenerated human skeletal muscle: estimating activation using T2-parameter magnetic resonance imaging methods. Artif Organs. 2008;32:604–8.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikkuni, Y., Nishiyama, H. & Hayashi, T. Clinical significance of T2 mapping MRI for the evaluation of masseter muscle pain in patients with temporomandibular joint disorders. Oral Radiol 29, 50–55 (2013). https://doi.org/10.1007/s11282-012-0108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-012-0108-y

Keywords

Navigation