Skip to main content
Log in

Piecewise Maximal Similarity for Ad-hoc Social Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Computing Profile Similarity is a fundamental requirement in the area of Social Networks to suggest similar social connections that have high chance of being accepted as actual connection. Representing and measuring similarity appropriately is a pursuit of many researchers. Cosine similarity is a widely used metric that is simple and effective. This paper provides analysis of cosine similarity for social profiles and proposes a novel method to compute Piecewise Maximal Similarity between profiles. The proposed metric is 6% more effective to measure similarity than cosine similarity based on computations on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson, A., Huttenlocher, D., Kleinberg, J., & Leskovec, J. (2012). Effects of user similarity in social media. doi:10.1145/2124295.2124378.

  2. Aneja, N., & Gambhir, S. (2012). Various issues in ad-hoc social networks. In: Proceedings of National Conference on Recent Trends in Computer Scince and Information Technology (RTCSIT) (pp. 6–9). Echelon Institute of Technology, Faridabad, Haryana, India. http://echeloninstitute.org/images/download/proceedingRTCSIT.pdf.

  3. Aneja, N., & Gambhir, S. (2014). Geo-social profile matching algorithm for dynamic interests in ad-hoc social network. Social Networking, 3(5), 240–247. doi:10.4236/sn.2014.35029. http://www.scirp.org/journal/PaperDownload.aspx?paperID=51108.

  4. Aneja, N., & Gambhir, S. (2015). Geo-social semantic profile matching algorithm for dynamic interests in ad-hoc social network. In: 2015 IEEE International Conference on Computational Intelligence and Communication Technology (CICT). IEEE.

  5. Caputo, A., Socievole, A., & Rango, F. D. (2015). CRAWDAD dataset unical/socialblueconn (v. 2015-02-08). Downloaded from http://crawdad.org/unical/socialblueconn/20150208 doi:10.15783/C7GK5R.

  6. Chigozie, O., Williams, P., & Osegi, N. E. (2015). Hybrid social networking application for a university community. CoRR abs/1503.05642. http://arxiv.org/abs/1503.05642.

  7. Chung, E., Joy, J., & Gerla, M. (2015). Discoverfriends: Secure social network communication in mobile ad hoc networks. CoRR abs/1505.07487. http://arxiv.org/abs/1505.07487.

  8. Facebook. (2004). Facebook. https://www.facebook.com/.

  9. Gambhir, S., & Aneja, N. (2013). Ad-hoc social network: A comprehensive survey. International Journal of Scientific and Engineering Research, 4(8), 156–160. http://www.ijser.org/researchpaper%5CAd-hoc-Social-Network-A-Comprehensive-Survey.pdf.

  10. Gambhir, S., Aneja, N., & Mangla, S. (2015). Need of ad-hoc social network based on users dynamic interests. In: IEEE 2015 International Conference on Soft Computing Techniques and Implementation (ICSCTI). IEEE.

  11. Google. (2011). Google+. https://plus.google.com/.

  12. Han, X., Wang, L., Crespi, N., Park, S., & Cuevas, A. (2015). Alike people, alike interests? Inferring interest similarity in online social networks. Decision Support Systems, 69(C), 92–106. doi:10.1016/j.dss.2014.11.008.

    Article  Google Scholar 

  13. Kraus, N., Carmel, D., Keidar, I., & Orenbach, M. (2015). NearBucket-LSH: Efficient similarity search in P2P networks. http://arxiv.org/abs/1511.07148.

  14. Lee, J., & Hong, C. S. (2011). A mechanism for building ad-hoc social network based on user’s interest. doi:10.1109/APNOMS.2011.6076997.

  15. LinkedIn. (2002). LinkedIn. https://www.linkedin.com/.

  16. Mangla, S., & Gambhir, S. (2015). Research challenges in ad-hoc social network (ASN). International Journal of Advance Research in Science and Engineering, 4(1), 124–128. http://www.ijarse.com/images/fullpdf/159a.pdf.

  17. Mizzaro, S., Pavan, M., & Scagnetto, I. (2015). Content based similarity of twitter users. Lecture Notes in Computer Science, Advances in Information Retrieval, Vol. 9022.

  18. Socievole, A., De Rango, F., & Caputo, A. (2014). Wireless contacts, facebook friendships and interests: Analysis of a multi-layer social network in an academic environment. In: Wireless Days (WD), 2014 IFIP, pp. 1–7. doi:10.1109/WD.2014.7020819.

  19. Spertus, E., Sahami, M., & Buyukkokten, O. (2005). Evaluating similarity measures: A large-scale study in the orkut social network. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05 (pp. 678–684). ACM, New York, NY, USA. doi:10.1145/1081870.1081956. http://doi.acm.org/10.1145/1081870.1081956.

  20. Twitter. (2006). Twitter. https://twitter.com/.

  21. Zhang, D., Zhang, D., Xiong, H., Hsu, C. H., & Vasilakos, A. (2014). Basa: Building mobile ad-hoc social networks on top of android. IEEE Network, 28(1), 4–9. doi:10.1109/MNET.2014.6724100.

    Article  Google Scholar 

  22. Zhang, Y., Tang, J., Yang, Z., Pei, J., & Yu, P. S. (2015). Cosnet: Connecting heterogeneous social networks with local and global consistency. doi:10.1145/2783258.2783268. http://doi.acm.org/10.1145/2783258.2783268.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagender Aneja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambhir, S., Aneja, N. & De Silva, L.C. Piecewise Maximal Similarity for Ad-hoc Social Networks. Wireless Pers Commun 97, 3519–3529 (2017). https://doi.org/10.1007/s11277-017-4683-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4683-4

Keywords

Navigation