Skip to main content

Advertisement

Log in

TFTS: A Novel Triple Factor Time Synchronization for Effective Routing in Large Scale WSN

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The area of wireless sensor network have already gained a good momentum from last decade in research community owing to its potential advantages of event monitoring without any aid of human as well as ongoing issues encountered by it. Out of various issues, time synchronization is one of the prominent issues, where the success factor of event alarms generated by the nodes depends. As the hardware based clocks in wireless sensor network are quite imprecise so there are large number of possibilities of clock drift, skewness, and offset in clock time. This paper starts by discussing the loopholes of the prior standard research work and introduces a novel Triple Factor Time Synchronization (TFTS) algorithm that addresses the issues. Evaluated on extended level of experiments and benchmarking with standard protocols, TFTS based on probabilistic approach is found to generate reduced synchronization errors optimally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Faludi, R. (2010). Building wireless sensor networks: With ZigBee, XBee, Arduino, and processing (p. 322). Sebastopol: O’Reilly Media Inc. (Computers).

    Google Scholar 

  2. Raghavendra, C. S., Sivalingam, K. M., & Znati, T. (2006). Wireless sensor networks (p. 426). Berlin: Springer. (Computers).

    MATH  Google Scholar 

  3. Szynkiewicz, E. N., Kwaśniewski, P., & Windyga, I. (2009). Comparative study of wireless sensor networks energy-efficient topologies and power save protocols. Journal of Telecommunication and Information Technology, 3, 68–75.

    Google Scholar 

  4. Li, C., Zhang, H., Hao, B., & Li, J. (2011). A survey on routing protocols for large-scale wireless sensor networks. Sensors, 11, 3498–3526.

    Article  Google Scholar 

  5. Azizi, T., Beghdad, R., & Oussalah, M. (2013). Bandwidth assignment in a cluster-based wireless sensor network. In Proceedings of the World Congress on Engineering (Vol. 2).

  6. Sadeghi, M., Khosravi, F., Atefi, K., & Barati, M. (2012). Security analysis of routing protocols in wireless sensor networks. IJCSI International Journal of Computer Science Issues, 9(1), 465–472.

    Google Scholar 

  7. Xia, F. (2008). QoS challenges and opportunities in wireless sensor/actuator networks. Sensors, 8, 1099–1110.

    Article  Google Scholar 

  8. Arora, A., Dutta, P., & Bapat, S. (2004). A line in the sand: A wireless sensor network for target detection, classification, and tracking. ACM: Journal Computer Networks, 46(5), 605–634.

    Google Scholar 

  9. Xu, E., Ding, Z., & Dasgupta, S. (2011). Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Transactions on Signal Processing, 59(6), 2887–2897.

    Article  MathSciNet  Google Scholar 

  10. Ochiai, H., Mitran, P., & Poor, H. V. (2005). Collaborative beamforming for distributed wireless ad hoc sensor networks. IEEE Transactions, 53(11), 4110–4124.

    Article  MathSciNet  Google Scholar 

  11. http://www.circlemud.org/jelson/writings/timesync/node2.html

  12. Li, L., Yongpan, L., Huazhong, Y., & Hui, W. (2011). Influence of node dynamics on cluster global time continuity. IEEE: Tsinghua Science and Technology, 16(2), 207–215.

    Google Scholar 

  13. Shen, X., Qian, X., Zhao, B., Fang, Q., & Dai, G. (2011). Clapping and broadcasting synchronization in wireless sensor networks. IEEE: Tsinghua Science and Technology, 16(6), 632–639.

    Google Scholar 

  14. Ju, Y., Paik, W., & Shin, M. (2014). Design of time synchronization protocol based on master–slave topology for heterogeneous USN. International Journal of Multimedia and Ubiquitous Engineering, 9(2), 373–384.

    Article  Google Scholar 

  15. Yuan, Y., Lynne, L., & Parker, E. (2014). Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks. Elsevier: Information Fusion, 15, 64–79.

    Google Scholar 

  16. Medina, C., Segura, J. C., & Torre, A. D. L. (2013). Accurate time synchronization of ultrasonic TOF measurements in IEEE 802.15.4 based wireless sensor networks. Elsevier: Adhoc Networks, 11, 442–452.

    Google Scholar 

  17. Uluagac, A. S., Beyah, R. A., & Copeland, J. A. (2010). Time-Based DynamiC Keying and En-Route Filtering (TICK) for wireless sensor networks. In IEEE-Globecom (pp. 1–6).

  18. Bekmezci, I., Alagoz, F., & Arslan, M. G. (2007). Periodic global broadcast time synchronization (PGB-TS) for TDMA based sensor networks In IEEE-3rd International Conference on Recent Advances in Space Technologies (pp. 531–536).

  19. He, T., Vicaire, P., & Yan, T. (2006). Achieving real-time target tracking using wireless sensor networks. In Real-Time and Embedded Technology and Applications Symposium, Proceedings of the 12th IEEE.

  20. Hoepmana, J.-H., Larsson, A., Schiller, E. M., & Tsigas, P. (2011). Secure and self-stabilizing clock synchronization in sensor networks. Theoretical Computer Science, 412(40), 5631–5647.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chirdchoo, N., Soh, W.-S., & Chua, K. C. (2008). MU-Sync: A time synchronization protocol for underwater mobile networks. In Proceedings of the third ACM international workshop on Underwater Networks (Vol. 8, pp. 35–42).

  22. Funck, J., & Gühmann, C. (2013). Time-synchronous sampling in wireless sensor networks. In 19th Symposium IMEKO TC 4 Symposium and 17th IWADC Workshop Advances in Instrumentation and Sensors Interoperability.

  23. Ganeriwal, S., Kumar, R., & Srivastava, M. B. (2003). Timing-sync protocol for sensor networks. In Center for Embedded Network Sensing University of California (pp. 138–149).

  24. Maróti, M., Kusy, B., Simon, G., & Lédeczi, Á. (2004). The flooding time synchronization protocol. In Proceedings of the 2nd international conference on Embedded networked sensor systems (pp. 39–49).

  25. Greunen, J. V., & Rabaey, J. (2003). Lightweight time synchronization for sensor networks. In Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications (pp. 11–19).

  26. Yoon, S., Veerarittiphan, C., & Sichitiu, M. L. (2007). Tiny-Sync: Tight time synchronization for wireless sensor networks. ACM Transactions on Sensor Networks, 3(2), 81–118.

    Article  Google Scholar 

  27. Noh, K.-L., Serpedin, E., & Qaraqe, K. (2008). A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization. IEEE Transactions on Wireless Communications, 7(9), 3318–3322.

    Article  Google Scholar 

  28. Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review, 36, 147–163.

    Article  Google Scholar 

  29. Dai, H., & Han, R. (2004). TSync : A lightweight bidirectional time synchronization service for wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review, 8(1), 125–139.

    Article  Google Scholar 

  30. Solis, R., Borkar, V. S., & Kumar, P. R. (2006). A new distributed time synchronization protocol for multihop wireless networks. In Proceedings of the 45th IEEE Conference on Decision and Control.

  31. Schenato, L., & Fiorentin, F. (2011). Average Time Synch: A consensus-based protocol for clock synchronization in wireless sensor networks. Automatica, 47(9), 1878–1886.

    Article  MathSciNet  MATH  Google Scholar 

  32. Carli, R., Chiuso, A., Schenato, L., & Zampieri, S. (2011). Optimal synchronization for networks of noisy double integrators. IEEE Transactions on Automatic Control, 56(5), 1146–1152.

    Article  MathSciNet  Google Scholar 

  33. Piecewise Continuous Function. http://www.mathwords.com/p/piecewise_continuous_function.htm. Retrived 9 June 2015.

  34. Left Continuous Function. http://www.ditutor.com/limits/left-continuous.html. Retrived 10 June 2015.

  35. Swain, A. R., & Hansdah, R. C. (2011). A weighted average based external clock synchronization protocol for wireless sensor networks. In 31st International Conference on Distributed Computing Systems Workshops (ICDCSW) (pp. 218–229).

  36. Watwe, S., & Hansdah, R. C. (2015). Improving the energy efficiency of a clock synchronization protocol for WSNs using a TDMA-based MAC protocol. In IEEE 29th International Conference on Advanced Information Networking and Applications (AINA) (pp. 231–238).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nagarathna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarathna, K., Mallapur, J.D. TFTS: A Novel Triple Factor Time Synchronization for Effective Routing in Large Scale WSN. Wireless Pers Commun 87, 1157–1173 (2016). https://doi.org/10.1007/s11277-015-3046-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3046-2

Keywords

Navigation