Skip to main content

Advertisement

Log in

MAC Protocol Design Based on Satellites Presence for Low-Energy Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A satellite is a way that allows a system administrator to receive data collected by sensors in different geographical areas. To realize this task, a medium access control (MAC) protocol in sensor networks must minimize power consumption in order to extend the lifetime of sensor nodes. To remedy this problem, we first assumed an architecture based on a Low Earth Orbit satellite and a network of heterogeneous sensors (Ordinary Nodes ‘ONs’ and Cluster Heads ‘CHs’). We proposed a MAC protocol, called Satellite Sensor MAC (SS-MAC), which avoids the different causes of energy dissipations. The basic idea behind our protocol is to minimize the number of communications. This number is based on the data quantities collected by each ON (or each CH) in order to extend the lifetime of ONs, which means extend the network lifetime. Our protocol uses four periods: a period for the grouping nodes to form clusters, a Transmission/Reception period between ONs and their CHs, a period when the satellite allocates slots to CHs and a period when CHs send their data to the satellite. Finally, the energy consumption in each period was evaluated through its protocol analysis, numerical results and Markov chain models. All these results have shown the energy-efficient of the SS-MAC protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akyildiz, I.-F., & Vuran, M.-C. (2010). Wireless sensor networks. London: Wiley.

    Book  MATH  Google Scholar 

  2. Simon, G., Maroti, M., Ledeczi, A., Balogh, G., Kusy, B., Nadas, A., Pap, G., Sallai, J., & Frampton, K. (2004). Sensor network-based countersniper system. In Proceedings of the international conference on embedded networked sensor systems.

  3. Yick, J., Mukherjee, B., & Ghosal, D. (2005). Analysis of a prediction-based mobility adaptive tracking algorithm. In Proceedings of the IEEE second international conference on broadband networks.

  4. Castillo-Effen, M., Quintela, D.-H., Jordan, R., Westhoff, W., & Moreno, W. (2004). Wireless sensor networks for flash-flood alerting. In Proceedings of the fifth IEEE international Caracas conference on devices, circuits and systems (pp. 142–146).

  5. Gao, T., Greenspan, D., Welsh, M., Juang,R.-R., Alm, A. (2005). Vital signs monitoring and patient tracking over a wireless network. In Proceedings of the 27th IEEE EMBS annual international conference.

  6. Lorincz, K., Malan, D., Fulford-Jones, T.-F., Nawoj, A., Clavel, A., Shnayder, V., Mainland, G., Welsh, M., & Moulton, S. (2004). Sensor networks for emergency response: Challenges and opportunities. In Pervasive computing for first response (special issue), IEEE pervasive computing (pp. 16–23).

  7. Wener-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., & Walsh, M. (2006). Deploying a wireless sensor network on an active volcano. In Data-driven applications in sensor networks (special issue), IEEE internet computing (pp.18–25).

  8. Taleb, T., Nait-Abdesselam, F., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2006). Design guidelines for a global and self-managed LEO satellites-based sensor network. In Proceedings of the IEEE Globecom’06, San Francisco, USA.

  9. Poulakis, M. I., Vassaki, S., & Panagopoulos, A. D. (2013). Satellite-based wireless sensor networks: Radio communication link design. In Proceedings of the 7th European conference on antennas and propagation (EuCAP) (pp. 2620–2624).

  10. Kawamoto, Y., Nishiyama, H., Kato, N., Yamamoto, S., Yoshimura, N., & Kadowaki, N. (2012). On real-time data gathering in next generation satellite-routed sensor system (SRSS). In Proceedings of the international conference on wireless communications and signal processing.

  11. Bedon, H., Miguel, C., Fernandez, A., & Park, J.-S. (2013). A DTN system for nanosatellite-based sensor networks using a new ALOHA multiple access with gateway priority. Smart Computing Review, 3(5), 383–396.

    Article  Google Scholar 

  12. Celandroni, N., Ferro, E., Gotta, A., Oligeri, G., Roseti, C., Luglio, M., Bisio, I., Cello, M., Davoli, F., Panagopoulos, A. D., Poulakis, M., Vassaki, S., De Cola, T., Marchitti, M. A., Hu, Y. F., Pillai, P., Verma, S., Xu, K., & Acar, G. (2012). A survey of architectures and scenarios in satellite-based wireless sensor networks: System design aspects. International Journal of Satellite Communications and Networking, 31(1), 1–38.

    Article  Google Scholar 

  13. Jiang, W., & Zong, P. (2011). A discrete-time traffic and topology adaptive routing algorithm for LEO satellite networks. International Journal of Communications, Network and System Sciences, 4(1), 42–52.

    Article  Google Scholar 

  14. Addaim, A., Kherras, A., & Guennoun, Z. (2014). Design of WSN with relay nodes connected directly with a LEO nanosatellite. International Journal of Computer and Communication, Engineering, 3(5), 310–316.

    Article  Google Scholar 

  15. Long, F., Yang, Z., & Sun, F. (2010). A multi-objective optimization based QoS routing algorithm for multi-layered satellite IP networks. In Proceedings of the IEEE international conference on networking, sensing, and control, Chicago, USA.

  16. Long, F., Sun, F., & Yang, Z. (2010). A multi-QoS objective optimization routing for hierarchical satellite networks. In Proceedings of the ETCS 2010—The 2nd international workshop on education technology and computer science, China.

  17. Hamdi, M., & Boudriga, N. (2008). Bandwidth-effective design of a satellite-based hybrid wireless sensor network for mobile target detection and tracking. IEEE Systems Journal, 2, 74–82.

    Article  Google Scholar 

  18. Karapantazis, S., Papapetrou, E., Pavlidou, F.-N. (2007). On-demand routing in LEO satellite systems. In IEEE international conference on communications (ICC 2007), Glasgow, Scotland (pp. 24–28).

  19. Taleb, T., Kato, N., & Nemoto, Y. (2005). Recent trends in IP/NGEO satellite communication systems: Transport, routing, management, mobility. IEEE Wireless Communications Magazine, 12, 63–69.

    Article  Google Scholar 

  20. Taleb, T., Kato, N., & Nemoto, Y. (2006). REFWA: An efficient and fair congestion control scheme for LEO satellite networks. IEEE/ACM Transactions on Networking Journal, 14, 1031–1044.

    Article  Google Scholar 

  21. Ye, W., Heidemann, J., & Estrin, D. (2002) An energy-efficient MAC protocol for wireless sensor networks. In IEEE INFOCOM, New York (pp. 1567–1576).

  22. Chang, Y.-C., & Sheu, J.-P. (2009). An energy conservation MAC protocol in wireless sensor networks. Wireless Personal Communications, 48, 261–276.

    Article  Google Scholar 

  23. Peng, F. (2014). A novel adaptive mobility-aware MAC protocol in wireless sensor networks. Wireless Personal Communications, 81, 489–501.

    Article  Google Scholar 

  24. Roy, A., & Sarma, N. (2010). Energy saving in MAC layer of wireless sensor networks: A survey. In National workshop in design and analysis of algorithm.

  25. Boulfekhar, S., & Benmohammed, M. (2014). Synchronous receiver initiated MAC protocol for long-lived sensor networks. International Journal of Computers and Electrical Engineering, 40(2), 504–516.

    Article  Google Scholar 

  26. Chukwuka, E., & Arshad, K. (2013). Energy efficient MAC protocols for wireless sensor network: A survey. International Journal of Wireless and Mobile Networks (IJWMN), 5(4), 75–89.

    Article  Google Scholar 

  27. Chaari, L., & Kamoun, L. (2010). Wireless sensors networks MAC protocols analysis. Journal of Telecommunications, 2(1), 42–48.

    Google Scholar 

  28. Huang, P., Xiao, L., Soltani, S., Mutka, M.-W., & Xi, N. (2013). The evolution of MAC protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15, 101–120.

    Article  Google Scholar 

  29. Trivedi, N., Kuamr, G., & Raikwar, T. (2013). Survey on MAC protocol for wireless sensor network. International Journal of Emerging Technology and Advanced, Engineering, 3, 558–562.

    Google Scholar 

  30. Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: A survey. IEEE Communication Magazine, 44, 115–121.

    Article  Google Scholar 

  31. Ilyas, M., & Mahgoub, I. (2005). Handbook of sensor networks: Compact wireless and wired sensing systems. Boca Raton: CRC Press.

    Google Scholar 

  32. Boulfekhar, S., & Bouallouche, L., Benmohammed, M. (2012). S-TDMA: A new MAC protocol for wireless sensor networks. In Proceedings of the international conference on distributed simulation and real-time applications (pp. 29–35).

  33. Heinzelman, W., Chandrakasan, P., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless sensor networks. In Proceedings of the IEEE Hawaii international conference on system sciences (Vol. 2, pp. 10–19).

  34. Cheng, X., Huang, X., & Du, D.-Z. (Eds.) (2004). Ad hoc wireless networking. Springer. ISBN: 978-1-4613-0223-0.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samra Boulfekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulfekhar, S., Arab, A., Aïssani, D. et al. MAC Protocol Design Based on Satellites Presence for Low-Energy Wireless Sensor Networks. Wireless Pers Commun 86, 1299–1319 (2016). https://doi.org/10.1007/s11277-015-2989-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2989-7

Keywords

Navigation