Skip to main content
Log in

Analytical Models of Correlation Functions, DLL Discriminator Outputs and Multipath Envelope Errors for CosBOC(m, n) Modulated Signals in Coherent and Non-coherent Configurations

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper focuses on analytically modeling the multipath error effects in the code tracking Delay-Locked-Loop (DLL) with standard and narrow early–late correlators of Global Navigation Satellite System (GNSS) for Cosine Binary Offset Carrier (CosBOC) modulated signal. The latter one will be part of the modernized American Global Positioning System (GPS), the Russian GLONASS (GLObal NAvigation Satellite System in English), the new European Galileo and the Chinese Compass/BeiDou systems, signal plan. The mathematical formalism of the analytical model of the Correlation Function is proposed for any CosBOC modulated signal. Also derived, are the models of the DLL Discriminator Functions and the Multipath Error Envelopes for both coherent and non-coherent configurations. The computer implementations have shown that all the proposed models match closely the numerical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Betz, J. W., & Capozza, P. (2004). System for direct acquisition of received signals. US Patent Application Publication, US 2004/0071200 Al, April 2004.

  2. Betz, J. W. (2002). Binary offset carrier modulations for radionavigation. Navigation: Journal of the Institute of Navigation, 48, 227–246.

    Article  Google Scholar 

  3. Barker, B. C., Betz, J. W., Rehborn, K. A., et al. (2000). Overview of the GPS M code signal. In Proceedings of the national technical meeting of the Institute of Navigation (ION NTM ’00), Anaheim, CA, USA, January 2000 (pp. 542–549).

  4. Betz, J. W. (1999). The offset carrier modulation for GPS modernization. In Proceedings of the national technical meeting of The Institute of Navigation (ION NTM’99), San Diego, CA, USA, January 1999.

  5. Lohan, E. S., Lakhzouri, A., & Renfors, M. (2006). Binary-offset-carrier modulation techniques with application in satellite navigation system. Journal of Wireless Communications and Mobile Computing, 7, 767–779.

    Article  Google Scholar 

  6. Weiler, R. M., Blunt, P., Hodgart, S., & Unwin, M. (2008). The effect of cosine phased BOC modulation on the GNSS receiver search process. The Journal of Navigation, 61, 591–611.

    Article  Google Scholar 

  7. Yarlykov, M. S. (2010). The statistical characteristics of navigation cosine binary offset carrier modulated signals (CosBOC signals). Journal of Communications Technology and Electronics, 55, 990–1004.

    Article  Google Scholar 

  8. Dovis, F., Mulassano, P., & Margaria, D. (2007). Multiresolution acquisition engine tailored to the Galileo AltBOC signals. In Proceedings of the 20th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX, September 2007.

  9. Lohan, E. S., Lakhzouri, A., & Renfors, M. (2006). Complex double binary-offset-carrier modulation for a unitary characterization of Galileo and GPS signals. In IEEE Proceedings on Radar, Sonar and Navigation (Vol. 153, pp. 403–408).

  10. Lee, Y., Lee, Y., Yoon, T., Song, C., Kim, S., & Yoo, S. (2009). AltBOC and CBOC correlation functions for GNSS signal synchronization. In ICCSA ’09 Proceedings of the international conference on computational science and its applications. Berlin: Springer.

  11. Lohan, E. S., Bhuiyan, M. Z. H., & Hurskainen, H. (2011). MBOC signal options—Performance of multiplexed binary offset carrier modulations for modernized GNSS systems. GPS World, 22, 68–74.

    Google Scholar 

  12. Lohan, E. S. (2010). Analytical performance of CBOC-modulated Galileo E1 signal using sine BOC(1,1) receiver for massmarket applications. In Proceedings of IEEE/ION PLANS 2010, Indian Wells, CA, May 2010.

  13. Avila-Rodriguez, J. A., Wallner, S., Hein, G. W., et al. (2006). CBOC—An implementation of MBOC. In Proceedings of the 1st CNES workshop on Galileo signals and signal processing, Tolouse, France, October 2006.

  14. Avila-Rodriguez, J. A., Hein, G. W., Wallner, S., Issler, J. L., & Ries, L. (2007). The MBOC modulation: The final touch to the Galileo frequency and signal plan. In Proceedings of the 20th international technical meeting of the satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX, September 2007.

  15. Lohan, E. S., & Renfors, M. (2007). Correlation properties of multiplexed-BOC (MBOC) modulation for future GNSS signals. In European wireless conference. France, Paris.

  16. Hein, G. W., Avila-Rodriguez, J. A., Wallner, S., Betz, J., Hegarty, C., Rushanan, J., et al. (2006). MBOC: The new optimized spreading modulation recommended for GALILEO L1 OS and GPS L1C. In Proceedings of IEEE/ION PLANS 2006, San Diego, CA, USA, April 2006.

  17. Hoult, N., Aguado, L. E., & Xia, P. (2008). MBOC and BOC(1,1) Performance Comparison. Journal of Navigation, 61, 613–627.

    Article  Google Scholar 

  18. Dovis, F., Presti, L. L., Fantino, M., Mulassano, P., & Godet., J. (2008). Comparison between Galileo CBOC candidates and BOC(1,1) in terms of detection performance. International Journal of Navigation and Observation, 2008, 1–9.

  19. Hein, G. W., Godet, J., et al. (2002). Status of Galileo frequency and signal design. In Proceedings of ION GPS, Portland, OR, USA.

  20. Yarlykov, M. S. (2011). Complex meander pseudorandom code sequences and alternative binary offset carrier modulation (AltBOC modulation) in new generation satellite navigation systems. Journal of Communications Technology and Electronics, 56, 172–182.

    Article  Google Scholar 

  21. Côté, F. D., Psaromiligkos, I. N., & Gross, W. J. (2011). GNSS modulation: A unified statistical description. IEEE Transactions on Aerospace and Electronic Systems, 47, 1814–1836.

    Article  Google Scholar 

  22. Hein, G. W., et al. (2005). A candidate for the Galileo L1 OS optimized signal. In Proceedings of the Institute of Navigation GNSS, Long Beach, CA, USA, September 2005.

  23. Fine, P., & Wilson, W. (1999). Tracking algorithm for GPS offset carrier signal. In Proceedings of the ION/NTM (national technical meeting), San Diego, CA, January 1999 (pp. 671–676).

  24. Hodgart, M. S., Blunt, P. D., & Unwin, M. (2008). Double estimator—A new receiver principle for tracking BOC signals. Inside GNSS, 2008, 26–36.

    Google Scholar 

  25. Hodgart, M. S., Weiler, R. M., & Unwin, M. (2008). A triple estimating receiver of multiplexed binary offset carrier (MBOC) modulated signals. In Proceedings of the 21st international technical meeting of the Satellite Division of the Institute of Navigation (ION GNSS’08), Savannah, GA, USA, September 2008 (pp. 2295–2304).

  26. Schmid, A., & Neubauer, A. (2005). Differential correlation for Galileo/GPS receivers. In Proceedings IEEE international conference on acoustics, speech, and signal processing (ICASSP ’05), Philadelphia, PA, USA, March 2005.

  27. Julien, O., Macabiau, C., Cannon, M. E., & Lachapelle, G. (2007). ASPeCT: Unambiguous sine-boc(n, n) acquisition/tracking technique for navigation applications. IEEE on Transactions Aerospace Electronic Systems, 43, 1509–1627.

    Article  Google Scholar 

  28. Burian, A., Lohan, E. S., & Renfors, M. K. (2007). Efficient delay tracking methods with sidelobes cancellation for BOC-modulated signals. EURASIP Journal on Wireless Communications and Networking, 2007, 20.

  29. Yang, C., Miller, M., Nguyen, T., & Akos, D. (2006). Generalized frequency-domain correlator for software GPS receiver: Preliminary test results and analysis. In Proceedings of the ION/GNSS, Fort Worth, TX, September 2006 (pp. 2346–2630).

  30. Lohan, E. S., Burian, A., & Renfors, M. (2008). Low-complexity unambiguous acquisition methods for BOC-modulated CDMA signals. International Journal of Satellite Communications and Networking, 26, 20.

    Article  Google Scholar 

  31. Aloi, D. N., & Van Graas, F. (2004). Ground-multi path mitigation via polarization steering of GPS signal. IEEE Transactions on Aerospace and Electronic Systems, 40, 536–552.

    Article  Google Scholar 

  32. Kaplan, E. D., & Hegarty, C. J. (2006). Understanding GPS principles and applications (2nd ed.). Boston, MA: Artech House.

    Google Scholar 

  33. Hein, G. W., Irsigler, M., Avila-Rodriguez, J. A., & Pany, T. (2004). Performance of Galileo L1 signal candidates. In CDROM Proceedings of European navigation conference GNSS, Rotterdam, The Netherlands, May 2004.

  34. Rebeyrol, E., Macabiau, C., Lestarquit, L., Ries, L., Issler, J.-L., Boucheret, M. L., et al. (2005). BOC power spectrum densities. In Proceedings of the Institute of Navigation NTM-2005, San Diego, CA, Janury 2005.

  35. Sousa, F. M., Nunes, F. D., & Leitão, J. M. (2006). Strobe pulse design for multipath mitigation in BOC GNSS receivers. In Proceedings of IEEE/ION PLANS 2006, San Diego, CA, April 2006.

  36. Nunes, F., Sousa, F., & Leitão, J. M. (2004). Multipath mitigation technique for BOC signals using gating functions. In Proceedings of the European Space Agency workshop on satellite navigation user equipment technologies, NAVITEC-2004, Noordwijk, The Netherlands, December 2004.

  37. Harris, R. B., & Lightsey, E. G. (2009). A general model of multipath error for coherently tracked BOC modulated signals. IEEE Journal of Selected Topics in Signal Processing, 3, 682–694.

    Article  Google Scholar 

  38. Winkel, J. (2000). Modeling and simulating GNSS signal structures and receivers. Ph.D. thesis. Federal Armed Forces Munich.

  39. Zitouni, S., Rouabah, K., Attia, S., & Chikouche, D. (2012). Comments on a general model of multipath error for coherently tracked BOC modulated signals. Wireless Personal Communications, 70(4), 1397–1407.

  40. Rouabah, K., Chebir, S., Attia, S., Flissi, M., & Chikouche, D. (2012). Mathematical model of non-coherent-DLL discriminator output and multipath envelope error for BOC\((\alpha ,\beta )\) modulated signals. Positioning, 4(1), 65–79.

  41. Jinghui, Wu, & Dempster, A. G. (2012). Code tracking variance analysis for GNSS receivers with “strobe correlators”. IEEE Transaction on Aerospace and Electronic Systems, 48, 2760–2782.

    Article  Google Scholar 

  42. Dardari, D., Luise, M., & Falletti, E. (Eds.). (2011). Satellite and terrestrial radio positioning techniques: A signal processing perspective (p. 464). Oxford, UK: Elsevier Academic Press.

  43. Braasch, M. (1996). Global positioning system: Theory and applications (Vol. 1). Reston, VA: American Institute of Aeronautics and Astronautics Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Rouabah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitouni, S., Chikouche, D., Rouabah, K. et al. Analytical Models of Correlation Functions, DLL Discriminator Outputs and Multipath Envelope Errors for CosBOC(m, n) Modulated Signals in Coherent and Non-coherent Configurations. Wireless Pers Commun 82, 911–951 (2015). https://doi.org/10.1007/s11277-014-2259-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2259-0

Keywords

Navigation