Skip to main content
Log in

A survey on sensor placement for contamination detection in water distribution systems

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Frequent water pollution incidents have occurred recently, leading to severe damages, economic loss, and long-lasting society impact. Therefore, installation of water quality monitoring sensors in water distribution system (WDS) has been advocated as a viable solution to enable real-time pollution detection and thus the mitigation of the risks associated with catastrophic contamination incidents. Given the significant cost of placing sensors at all locations in a network, a critical issue is where to deploy the sensors within the distribution system while the network still gets covered. Although there exist a significant number of articles on sensor placement, WDS for contamination detection is unique comparing to other networks such as power grids, road networks, structural networks and microwave radio networks. In this paper, we conduct a comprehensive literature survey on the sensor placement problem for contamination detection in WDS, with a special focus on optimization strategies and framework. Current challenges, issues, and research directions are also identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hrudey, S. E., Payment, P., Huck, P. M., & Gillham, R. W. (2003). A fatal waterborne disease epidemic in Walkerton, Ontario: Comparison with other waterborne outbreaks in the developed world. Water Science & Technology, 47(3), 7–14.

    Google Scholar 

  2. Kou, J. Drinking water reservoirs were poisoned in ruyang city of henan province. http://news.china.com/zh_cn/social/1007/20031004/11549967.html.

  3. Hart, W. E., Berry, J. W., Boman, E., Phillips, C. A., Riesen L. A., & Watson, J.-P. (2008). Limited-memory techniques for sensor placement in water distribution networks. In Learning and intelligent optimization (pp. 125–137). New York: Springer.

  4. Xu, J., Johnson, M. P., Fischbeck, P. S., Small, M. J., & VanBriesen, J. M. (2010). Robust placement of sensors in dynamic water distribution systems. European Journal of Operational Research, 202(3), 707–716.

    Article  MATH  Google Scholar 

  5. Yi, T.-H., Li, H.-N., Gu, M., & Zhang, X.-D. (2014). Sensor placement optimization in structural health monitoring using niching monkey algorithm. International Journal of Structural Stability and Dynamics, 14(05), 1440012.

    Article  Google Scholar 

  6. Yi, T.-H., Zhou, G.-D., Li, H.-N., & Zhang, X.-D. (2015). Optimal sensor placement for health monitoring of high-rise structure based on collaborative-climb monkey algorithm. Structural Engineering and Mechanics, 54(2), 305–317.

    Article  Google Scholar 

  7. Lei, Y., Chen, Z.-W., Yi, T., Zhou, G.-D., Yi, T.-H., & Li, H.-N. (2014). Sensor placement optimization in structural health monitoring using cluster-in-cluster firefly algorithm. Advances in Structural Engineering, 17(8), 1103–1116.

    Article  Google Scholar 

  8. Vlasenko, I., Nikolaidis, I., & Stroulia, E. (2015). The smart-condo: Optimizing sensor placement for indoor localization. Systems, Man, and Cybernetics: Systems, IEEE Transactions, 45(3), 436–453.

    Google Scholar 

  9. Lee, J.-H., Kim, K., Lee, S.-C., & Shin, B.-S. (2014). An efficient localization method based on adaptive optimal sensor placement. International Journal of Distributed Sensor Networks. doi:10.1155/2014/983618.

  10. Chi, G., Wang, D., Le, T., Yu, M., & Luo, M. (2015). Sensor placement for fault isolability using low complexity dynamic programming. IEEE Transactions on Automation Science and Engineering, 12(3), 1080–1091.

    Article  Google Scholar 

  11. Bruggi, M., & Mariani, S. (2013). Optimization of sensor placement to detect damage in flexible plates. Engineering Optimization, 45(6), 659–676.

    Article  MathSciNet  Google Scholar 

  12. Chen, X., Kim, Y.-A., Wang, B., Wei, W., Shi, Z. J., & Song, Y. (2012). Fault-tolerant monitor placement for out-of-band wireless sensor network monitoring. Ad Hoc Networks, 10(1), 62–74.

    Article  Google Scholar 

  13. Welch, S. C., Kerkez, B., Bales, R. C., Glaser, S. D., Rittger, K., & Rice, R. R. (2013). Sensor placement strategies for snow water equivalent (swe) estimation in the american river basin. Water Resources Research, 49(2), 891–903.

    Article  Google Scholar 

  14. Pourali, M. (2013). A functional sensor placement optimization method for power systems health monitoring. IEEE Transactions on Industry Applications, 49(4), 1711–1719.

    Article  Google Scholar 

  15. Lee, A. J., & Diwekar, U. M. (2012). Optimal sensor placement in integrated gasification combined cycle power systems. Applied Energy, 99, 255–264.

    Article  Google Scholar 

  16. Eliades, D., Michaelides, M., Panayiotou, C., & Polycarpou, M. (2013). Security-oriented sensor placement in intelligent buildings. Building and Environment, 63, 114–121.

    Article  Google Scholar 

  17. Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655.

    Article  Google Scholar 

  18. Hart, W. E. (2010). Review of sensor placement strategies for contamination warning systems in drinking water distribution systems. Journal of Water Resources Planning and Management, 136(6), 611–619.

    Article  Google Scholar 

  19. Rathi, S., & Gupta, R. (2014). Sensor placement methods for contamination detection in water distribution networks: A review. Procedia Engineering, 89, 181–188.

    Article  Google Scholar 

  20. Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A., & Watson, J., ... & Trachtman, G. B. (2008). The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. Journal of Water Resources Planning and Management, 134(6), 556–568.

    Article  Google Scholar 

  21. Zeng, D., Wu, X., Wang, Y., Chen, H., Liang, K., & Shu, L. (2013). A survey on sensor deployment in underwater sensor networks. In China Conference wireless sensor networks (pp. 133–143). Berlin Heidelberg: Springer.

  22. http://www.who.int/mediacentre/factsheets/fs391/en/.

  23. Eliades, D., & Polycarpou, M. (2006). Iterative deepening of pareto solutions in water sensor networks. In Proceedings of 8th annual water distribution system analysis symposium.

  24. Rathi, S., & Gupta, R. (2015). A simple sensor placement approach for regular monitoring and contamination detection in water distribution networks. KSCE Journal of Civil Engineering, 20, 1–12.

    Google Scholar 

  25. Rathi, S., & Gupta, R. (2014). Monitoring stations in water distribution systems to detect contamination events. ISH Journal of Hydraulic Engineering, 20(2), 142–150.

    Article  Google Scholar 

  26. Preis, A., & Ostfeld, A. (2008). Multiobjective contaminant sensor network design for water distribution systems. Journal of Water Resources Planning and Management, 134(4), 366–377.

    Article  Google Scholar 

  27. Berry, J. W., Fleischer, L., Hart, W. E., Phillips, C. A., & Watson, J.-P. (2005). Sensor placement in municipal water networks. Journal of Water Resources Planning and Management, 131(3), 237–243.

    Article  Google Scholar 

  28. Ostfeld, A., & Kessler, A. (2001). Protecting urban water distribution systems against accidental hazards intrusions. In Proceedings IWA second conference.

  29. Rossman, L. A. (2000). Epanet 2 users manual, us environmental protection agency. Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH, 45268.

  30. Berger-Wolf, T. Y., Hart, W. E., & Saia, J. (2005). Discrete sensor placement problems in distribution networks. Mathematical and Computer Modelling, 42(13), 1385–1396.

    Article  MathSciNet  MATH  Google Scholar 

  31. Carr, R. D., Greenberg, H. J., Hart, W. E., Konjevod, G., Lauer, E., Lin, H., et al. (2006). Robust optimization of contaminant sensor placement for community water systems. Mathematical programming, 107(1–2), 337–356.

    Article  MathSciNet  MATH  Google Scholar 

  32. Berry, J., Hart, W. E., Phillips, C. A., Uber, J. G., & Watson, J.-P. (2006). Sensor placement in municipal water networks with temporal integer programming models. Journal of water resources planning and management, 132(4), 218–224.

    Article  Google Scholar 

  33. Krause, A., Leskovec, J., Isovitsch, S., Xu, J., Guestrin, C., VanBriesen, J., Small, M., & Fischbeck, P. (2006). Optimizing sensor placements in water distribution systems using submodular function maximization. In Proceedings of 8th annual water distribution system analysis symposium.

  34. Ma, X., Song, Y., Huang, J., & Wu, J. (2010). Robust sensor placement problem in municipal water networks. In Computational science and optimization (CSO), 2010 third international joint conference on (vol. 1. IEEE, 2010, pp. 291–294).

  35. Afshar, A., & Mariño, M. A. (2012). Multi-objective coverage-based aco model for quality monitoring in large water networks. Water Resources Management, 26(8), 2159–2176.

    Article  Google Scholar 

  36. Guan, J., Aral, M. M., Maslia, M. L., & Grayman, W. M. (2006). Optimization model and algorithms for design of water sensor placement in water distribution systems. In 8th Annual Symposium on Water Distribution Systems Analysis. Environmental and Water Resources Institute of ASCE (EWRI of ASCE) New York, pp. 1–16.

  37. Shastri, Y., & Diwekar, U. (2006). Sensor placement in water networks: A stochastic programming approach. Journal of Water Resources Planning and Management, 132(3), 192–203.

    Article  Google Scholar 

  38. Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., & Faloutsos, C. (2008). Efficient sensor placement optimization for securing large water distribution networks. Journal of Water Resources Planning and Management, 134(6), 516–526.

    Article  Google Scholar 

  39. Fu, Z., Ren, K., Shu, J., Sun, X., & Huang, F. Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE transactions on parallel and distributed systems, no. 1, pp. 1, PrePrints PrePrints. doi:10.1109/TPDS.2015.2506573.

  40. Fu, Z., Sun, X., Liu, Q., Zhou, L., & Shu, J. (2015). Achieving efficient cloud search services: Multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Transactions on Communications, E98–B(1), 190–200.

    Article  Google Scholar 

  41. Ren, Y., Shen, J., Wang, J., Han, J., & Lee, S. (2015). Mutual verifiable provable data auditing in public cloud storage. Journal of Internet Technology, 16(2), 317–323.

    Google Scholar 

  42. Von Laszewski, G., Wang, L., Wang, F., Fox, G. C., & Mahinthakumar, G. K. (2011). Threat detection in an urban water distribution systems with simulations conducted in grids and clouds. In Proceedings of the second international conference on parallel, distirbuted, grid and cloud computing for engineering, Ajaccio, Corsica, France.

  43. Wu, Z., & Khaliefa, M. (2012). Cloud computing for high performance optimization of water distribution systems. In Proceedings (pp. 679–686). Albuquerque, New Mexico: World Environmental and Water Resources Congress.

  44. Shen, H., & McBean, E. A. (2013). Application of parallel computing in data mining for contaminant source identification in water distribution systems. Canadian Water Resources Journal, 38(1), 34–39.

    Article  Google Scholar 

  45. Wang, L., Chen, D., Liu, W., Ma, Y., Wu, Y., & Deng, Z. (2014). Dddas-based parallel simulation of threat management for urban water distribution systems. Computing in Science & Engineering, 16(1), 8–17.

    Article  Google Scholar 

  46. Hu, C., Tian, D., & Yao, H. (2014). A cloud-based optimization for the placement of water quality sensors in water distribution system. In Mechatronics and control (ICMC), 2014 international conference on, IEEE (pp. 698–702).

  47. Trachtman, G. B. (2006). A strawmancommon sense approach for water quality sensor site selection. In Proceedings of 8th annual water distribution system analysis symposium.

  48. Xu, J., Fischbeck, P. S., Small, M. J., VanBriesen, J. M., & Casman, E. (2008). Identifying sets of key nodes for placing sensors in dynamic water distribution networks. Journal of Water Resources Planning and Management, 134(4), 378–385.

    Article  Google Scholar 

  49. Berry, J., Hart, W. E., Phillips, C. A., Uber, J. G., & Walski, T. M. (2005). Water quality sensor placement in water networks with budget constraints. In Proceedings of the ASCE/EWRI congress.

  50. Ghimire, S. R., & Barkdoll, B. D. (2006). A heuristic method for water quality sensor location in a municipal water distribution system: Mass related based approach. In Proceedings of 8th annual water distribution system analysis symposium.

  51. Chung, G., Yoo, D. G., & Kim, J. H. (2010). Optimal water quality sensor locations in water distribution systems by network analysis and multi-objective genetic algorithm. In Water distribution systems analysis 2010. ASCE (pp. 309–316).

  52. Perelman, L., & Ostfeld, A. (2011). Water-distribution systems simplifications through clustering. Journal of Water Resources Planning and Management, 138(3), 218–229.

    Article  Google Scholar 

  53. Perelman, L., & Ostfeld, A. (2013). Application of graph theory to sensor placement in water distribution systems. In Proceedings of World Environmental and Water Resources Congress (pp. 617–624).

  54. Schal, S., Lothes, A., Bryson, S., & Ormsbee, L. (2013). Water quality sensor placement guidance using teva-spot. In Proceedings of World Environmental and Water Resources Congress.

  55. Chang, N.-B., Pongsanone, N. P., & Ernest, A. (2013). A rule-based decision support system for sensor deployment in small drinking water networks. Journal of Cleaner Production, 60, 152–162.

    Article  Google Scholar 

  56. Chang, N.-B., Pongsanone, N. P., & Ernest, A. (2011). Comparisons between a rule-based expert system and optimization models for sensor deployment in a small drinking water network. Expert systems with applications, 38(8), 10685–10695.

    Article  Google Scholar 

  57. Chang, N.-B., Prapinpongsanone, N., & Ernest, A. (2012). Optimal sensor deployment in a large-scale complex drinking water network: Comparisons between a rule-based decision support system and optimization models. Computers & Chemical Engineering, 43, 191–199.

    Article  Google Scholar 

  58. Kumar, A., Kansal, M., Arora, G., Ostfeld, A., & Kessler, A. (1999). Detecting accidental contaminations in municipal water networks. Journal of Water Resources Planning and Management, 125(5), 308–310.

    Article  Google Scholar 

  59. Schwartz, R., Lahav, O., & Ostfeld, A. Optimal sensor placement in water distribution systems for injection of chlorpyrifos. In World Environmental and Water Resources Congress 2014s Water Without Borders. ASCE (pp. 485–494).

  60. Rico-Ramirez, V., Frausto-Hernandez, S., Diwekar, U. M., & Hernandez-Castro, S. (2007). Water networks security: A two-stage mixed-integer stochastic program for sensor placement under uncertainty. Computers & Chemical Engineering, 31(5), 565–573.

    Article  Google Scholar 

  61. Cozzolino, L., Della Morte, R., Palumbo, A., & Pianese, D. (2011). Stochastic approaches for sensors placement against intentional contaminations in water distribution systems. Civil Engineering and Environmental Systems, 28(1), 75–98.

    Article  Google Scholar 

  62. Comboul, M., & Ghanem, R. (2012). Value of information in the design of resilient water distribution sensor networks. Journal of Water Resources Planning and Management, 139(4), 449–455.

    Article  Google Scholar 

  63. Perelman, L., & Ostfeld, A. (2009). Extreme impact contamination events sampling for water distribution systems security. Journal of Water Resources Planning and Management, 136(1), 80–87.

    Article  Google Scholar 

  64. Weickgenannt, M., Kapelan, Z., Blokker, M., & Savic, D. A. (2010). Risk-based sensor placement for contaminant detection in water distribution systems. Journal of Water Resources Planning and Management, 136(6), 629–636.

    Article  Google Scholar 

  65. Liu, S., & Auckenthaler, P. (2014). Optimal sensor placement for event detection and source identification in water distribution networks. Journal of Water Supply: Research and TechnologyAQUA, 63(1), 51–57.

    Article  Google Scholar 

  66. Snyder, L. V. (2006). Facility location under uncertainty: A review. IIE Transactions, 38(7), 547–564.

    Article  Google Scholar 

  67. Watson, J.-P., Hart, W. E., & Murray, R. (2006). Formulation and optimization of robust sensor placement problems for contaminant warning systems. In Water Distribution System Symposium, 10(3), 10–10.

    Google Scholar 

  68. Watson, J.-P., Murray, R., & Hart, W. E. (2009). Formulation and optimization of robust sensor placement problems for drinking water contamination warning systems. Journal of Infrastructure Systems, 15(4), 330–339.

    Article  Google Scholar 

  69. Langowski, R., Brdys, M., & Qi, R., et al. (2012). Optimised robust placement of hard quality sensors for robust monitoring of quality in drinking water distribution systems. In Intelligent control and automation (WCICA), 2012 10th World Congress on. IEEE (pp. 1109–1114).

  70. Christodoulou, S. E., Gagatsis, A., Xanthos, S., Kranioti, S., Agathokleous, A., & Fragiadakis, M. (2013). Entropy-based sensor placement optimization for waterloss detection in water distribution networks. Water Resources Management, 27(13), 4443–4468.

    Article  Google Scholar 

  71. Diao, K., & Rauch, W. (2013). Controllability analysis as a pre-selection method for sensor placement in water distribution systems. Water Research, 47(16), 6097–6108.

    Article  Google Scholar 

  72. Shen, H., & McBean, E. (2011). Diminishing marginal returns for sensor networks in a water distribution system. Journal of Water Supply: Research and Technology AQUA, 60(5), 286–293.

    Article  Google Scholar 

  73. Boccelli, D. L., Tryby, M. E., Uber, J. G., Rossman, L. A., Zierolf, M. L., & Polycarpou, M. M. (1998). Optimal scheduling of booster disinfection in water distribution systems. Journal of Water Resources Planning and Management, 124(2), 99–111.

    Article  Google Scholar 

  74. Zierolf, M. L., Polycarpou, M. M., & Uber, J. G. (1998). Development and autocalibration of an input-output model of chlorine transport in drinking water distribution systems. Control Systems Technology, IEEE Transactions on, 6(4), 543–553.

    Article  Google Scholar 

  75. Shang, F., Uber, J. G., & Polycarpou, M. M. (2002). Particle backtracking algorithm for water distribution system analysis. Journal of Environmental Engineering, 128(5), 441–450.

    Article  Google Scholar 

  76. Propato, M., & Uber, J. G. (2004). Linear least-squares formulation for operation of booster disinfection systems. Journal of Water Resources Planning and Management, 130(1), 53–62.

    Article  Google Scholar 

  77. Berry, J., Carr, R. D., Hart, W. E., Leung, V. J., Phillips, C. A., & Watson, J.-P. (2009). Designing contamination warning systems for municipal water networks using imperfect sensors. Journal of Water Resources Planning and Management, 135(4), 253–263.

    Article  Google Scholar 

  78. Tabaa, Y., Medouri, A., & Tetouan, M. (2012). Towards a next generation of scientific computing in the cloud. International Journal of Computer Science, 9(6), 177–183.

    Google Scholar 

  79. EPA, U.S. (2009). Tutorial threat ensemble vulnerability analysissensor placement optimization tool teva-spot graphical user interface. Version 2.2.0 Beta, EPA-600-R-08-147, Office of Research and Development, National Homeland Security Research Center, 1(1), 1–183.

  80. Lambrou, T. P., Anastasiou, C. C., Panayiotou, C. G., & Polycarpou, M. M. (2014). A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. Sensors Journal, IEEE, 14(8), 2765–2772.

    Article  Google Scholar 

  81. Zhuiykov, S. (2012). Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks. Sensors and Actuators B: Chemical, 161(1), 1–20.

    Article  Google Scholar 

  82. Shen, J., Tan, H., Wang, J., Wang, J., & Lee, S. (2015). A novel routing protocol providing good transmission reliability in underwater sensor networks. Journal of Internet Technology, 16(1), 171–178.

    Google Scholar 

  83. Suresh, M. A., Stoleru, R., Denton, R., Zechman, E., & Shihada, B. (2012). Towards optimal event detection and localization in acyclic flow networks. In International conference on distributed computing and networking. Berlin Heidelberg: Springer (pp. 179–196).

  84. Suresh, M., Stoleru, R., Zechman, E. M., Shihada, B., et al. (2013). On event detection and localization in acyclic flow networks. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 43(3), 708–723.

    Google Scholar 

  85. Suresh, M., Smith, L., Rasekh, A., Stoleru, R., Banks, M., Shihada, B., et al. (2014). Mobile sensor networks for leak and backflow detection in water distribution systems. In Advanced information networking and applications (AINA), 2014 IEEE 28th international conference on. IEEE (pp. 673–680).

  86. Suresh, M. A., Zhang, W., Gong, W., Stoleru, R., Rasekh, A., & Banks, M. K. (2015). Toward optimal monitoring of flow-based systems using mobile wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 11(3), 48.

    Article  Google Scholar 

  87. Perelman, L., & Ostfeld, A. (2013). Operation of remote mobile sensors for security of drinking water distribution systems. Water Research, 47(13), 4217–4226.

    Article  Google Scholar 

  88. Oliker, N., & Ostfeld, A. (2015). Inclusion of mobile sensors in water distribution system monitoring operations. Journal of Water Resources Planning and Management, 142(1), 04015044.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the NSF of China (Grant Nos. 61305087, 61402425, 61272470, 61440060), the China Postdoctoral Science Foundation funded project (2014M562086). This paper has been subjected to Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Li, M., Zeng, D. et al. A survey on sensor placement for contamination detection in water distribution systems. Wireless Netw 24, 647–661 (2018). https://doi.org/10.1007/s11276-016-1358-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1358-0

Keywords

Navigation